Антивещество – все о космосе

Содержание

10 фактов об антиматерии, которых вы могли не знать

Антивещество – все о космосе

Антиматерия давно была предметом научной фантастики. В книге и фильме «Ангелы и демоны» профессор Лэнгдон пытается спасти Ватикан от бомбы из антиматерии.

Космический корабль «Энтерпрайз» из «Звездного пути» использует двигатель на основе аннигилирующей антиматерии для путешествий быстрее скорости света. Но антиматерия также предмет нашей с вами реальности.

Частицы антиматерии практически идентичны своим материальным партнерам, за исключением того, что переносят противоположный заряд и спин. Когда антиматерия встречает материю, они мгновенно аннигилируют в энергию, и это уже не вымысел.

Хотя бомбы из антиматерии и корабли на основе этого же топлива пока не представляются возможными на практике, есть много фактов об антиматерии, которые вас удивят или позволят освежить в памяти то, что вы уже знали.

1. Антиматерия должна была уничтожить всю материю во Вселенной после Большого Взрыва

Согласно теории, Большой Взрыв породил материю и антиматерию в равных количествах. Когда они встречаются, происходит взаимное уничтожение, аннигиляция, и остается только чистая энергия. Исходя из этого, мы не должны существовать.

Но мы существуем. И насколько знают физики, это потому, что на каждый миллиард пар материи-антиматерии была одна лишняя частица материи. Физики всеми силами пытаются объяснить эту асимметрию.

2. Антиматерия ближе к вам, чем вы думаете

Небольшие количества антиматерии постоянно проливаются дождем на Землю в виде космических лучей, энергетических частиц из космоса. Эти частицы антивещества достигают нашей атмосферы с уровнем от одной до более сотни на квадратный метр. Ученые также располагают свидительствами того, что антивещество рождается во время грозы.

Есть и другие источники антивещества, которые находятся ближе к нам. Бананы, например, вырабатывают антивещество, испуская один позитрон — антивещественный экивалент электрона — примерно раз в 75 минут. Это происходит потому, что бананы содержат небольшое количество калия-40, встречающегося в природе изотопа калия. При распаде калия-40 иногда рождается позитрон.

Наши тела тоже содержат калий-40, а значит, и вы излучаете позитроны. Антиматерия аннигилирует мгновенно при контакте с материей, поэтому эти частицы антивещества живут не очень долго.

3. Людям удалось создать совсем немного антиматерии

Аннигиляция антиматерии и материи обладает потенциалом высвобождения огромного количества энергии. Грамм антиматерии может произвести взрыв размером с ядерную бомбу. Впрочем, люди произвели не так много антиматерии, поэтому бояться нечего.

Все антипротоны, созданные на ускорителе частиц Тэватроне в Лаборатории Ферми, едва ли наберут 15 нанограммов. В CERN на сегодняшний день произвели только порядка 1 нанограмма. В DESY в Германии — не больше 2 нанограммов позитронов.

Если вся антиматерия, созданная людьми, аннигилирует мгновенно, ее энергии не хватит даже на то, чтобы вскипятить чашку чая.

Проблема заключается в эффективности и стоимости производства и хранения антивещества. Создание 1 грамма антиматерии требует порядка 25 миллионов миллиардов киловатт-часов энергии и стоит выше миллиона миллиарда долларов. Неудивительно, что антивещество иногда включают в список десяти самых дорогих веществ в нашем мире.

4. Существует такая вещь, как ловушка для антиматерии

Для изучения антиматерии вам нужно предотвратить ее аннигиляцию с материей. Ученые нашли несколько способов это осуществить.

Заряженные частицы антивещества, вроде позитронов и антипротонов, можно хранить в так называемых ловушках Пеннинга. Они похожи на крошечные ускорители частиц. Внутри них частицы движутся по спирали, пока магнитные и электрические поля удерживают их от столкновения со стенками ловушки.

Однако ловушки Пеннинга не работают для нейтральных частиц вроде антиводорода. Поскольку у них нет заряда, эти частицы нельзя ограничить электрическими полями. Они удерживаются в ловушках Иоффе, которые работают, создавая область пространства, где магнитное поле становится больше во всех направлениях. Частицы антивещества застревают в области с самым слабым магнитным полем.

Магнитное поле Земли может выступать в качестве ловушек антивещества. Антипротоны находили в определенных зонах вокруг Земли — радиационных поясах Ван Аллена.

5. Антиматерия может падать (в прямом смысле слова)

Частицы материи и антиматерии обладают одной массой, но различаются в свойствах вроде электрического заряда и спина. Стандартная модель предсказывает, что гравитация должна одинаково воздействовать на материю и антиматерию, однако это еще предстоит выяснить наверняка. Эксперименты вроде AEGIS, ALPHA и GBAR работают над этим.

Наблюдать за гравитационным эффектом на примере антиматерии не так просто, как смотреть на падающее с дерева яблоко.

Эти эксперименты требуют удержания антиматерии в ловушке или замедления ее путем охлаждения до температур чуть выше абсолютного нуля.

И поскольку гравитация — самая слабая из фундаментальных сил, физики должны использовать нейтральные частицы антиматерии в этих экспериментах, чтобы предотвратить взаимодействие с более мощной силой электричества.

6. Антиматерия изучается в замедлителях частиц

Вы слышали об ускорителях частиц, а о замедлителях частиц слышали? В CERN находится машина под названием Antiproton Decelerator, в кольце которого улавливаются и замедляются антипротоны для изучения их свойств и поведения.

В кольцевых ускорителях частиц вроде Большого адронного коллайдера частицы получают энергетический толчок каждый раз, когда завершают круг. Замедлители работают противоположным образом: вместо того чтобы разгонять частицы, их толкают в обратную сторону.

7. Нейтрино могут быть своими собственными античастицами

Частица материи и ее антиматериальный партнер переносят противоположные заряды, что позволяет легко их различить. Нейтрино, почти безмассовые частицы, которые редко взаимодействуют с материей, не имеют заряда. Ученые считают, что они могут быть майорановскими частицами, гипотетическим классом частиц, которые являются своими собственными античастицами.

Проекты вроде Majorana Demonstrator и EXO-200 направлены на определение того, действительно ли нейтрино являются майорановскими частицами, наблюдая за поведением так называемого безнейтринного двойного бета-распада.

Некоторые радиоактивные ядра распадаются одновременно, испуская два электрона и два нейтрино. Если нейтрино были бы собственными античастицами, они бы аннигилировали после двойного распада, и ученым осталось бы наблюдать только электроны.

Поиск майорановских нейтрино может помочь объяснить, почем существует асимметрия материи-антиматерии. Физики предполагают, что майорановские нейтрино могут быть либо тяжелыми, либо легкими.

Легкие существуют в наше время, а тяжелые существовали сразу после Большого Взрыва.

Тяжелые майорановские нейтрино распались асимметрично, что привело к появлению крошечного количества вещества, которым наполнилась наша Вселенная.

8. Антиматерия используется в медицине

PET, ПЭТ (позитронно-эмиссионная топография) использует позитроны для получения изображений тела в высоком разрешении.

Излучающие позитроны радиоактивные изотопы (вроде тех, что мы нашли в бананах) крепятся к химическим веществам вроде глюкозы, которая присутствует в теле. Они вводятся в кровоток, где распадаются естественным путем, испуская позитроны.

Те, в свою очередь, встречаются с электронами тела и аннигилируют. Аннигиляция производит гамма-лучи, которые используются для построения изображения.

Ученые проекта ACE при CERN изучают антиматерию как потенциального кандидата для лечения рака.

Врачи уже выяснили, что могут направлять на опухоли лучи частиц, испускающие свою энергию только после того, как безопасно пройдут через здоровую ткань.

Использование антипротонов добавит дополнительный взрыв энергии. Эта техника была признана эффективной для лечения хомяков, только вот на людях пока не испытывалась.

9. Антиматерия может скрываться в космосе

Один из путей, которым ученые пытаются разрешить проблему асимметрии материи-антиматерии, является поиск антиматерии, оставшейся после Большого Взрыва.

Alpha Magnetic Spectrometer (AMS) — это детектор частиц, который располагается на Международной космической станции и ищет такие частицы. AMS содержит магнитные поля, которые искривляют путь космических частиц и отделяют материю от антиматерии. Его детекторы должны обнаруживать и идентифицировать такие частицы по мере прохождения.

https://www.youtube.com/watch?v=FerToLoTdEk

Столкновения космических лучей обычно производят позитроны и антипротоны, но вероятность создания атома антигелия остается чрезвычайно малой из-за гигантского количества энергии, которое требуется для этого процесса. Это означает, что наблюдение хотя бы одного ядрышка антигелия будет мощным доказательством существования гигантского количества антиматерии где-либо еще во Вселенной.

10. Люди на самом деле изучают, как оснастить космический аппарат топливом на антивеществе

Совсем немного антиматерии может произвести огромное количество энергии, что делает ее популярным топливом для футуристических кораблей в научной фантастике.

Движение ракеты на антивеществе гипотетически возможно; основным ограничением является сбор достаточного количества антивещества, чтобы это могло осуществиться.

Пока не существует технологий для массового производства или сбора антивещества в объемах, необходимых для такого применения. Однако ученые ведут работы над имитацией такого движения и хранения этого самого антивещества. Однажды, если мы найдем способ произвести большое количество антивещества, их исследования могут помочь межзвездным путешествиям воплотиться в реальности.

По материалам symmetrymagazine.org

Загадка антивещества

Антивещество – все о космосе

Все, с чем мы соприкасаемся в своей жизни, состоит из материи.

Чашка, которую мы держим в руке, состоит из молекул, молекулы — из атомов, атомы, вопреки своему названию («атом» в переводе с греческого означает «неделимый»), — из электронов, протонов и нейтронов.

Два последних ученые называют «барионами». Их можно делить дальше, на кварки, а может быть, и еще дальше, но пока на этом остановимся. Все вместе они образуют вещество.

Треки позитронов в пузырьковой камере. / © fineartamerica.com

Как знают все наши читатели, у вещества есть антипод — антивещество. При соприкосновении они взаимоуничтожаются с выделением очень большой энергии — аннигилируют.

По подсчетам физиков, кусок антивещества размером с кирпич, попав на Землю, может вызвать эффект сродни взрыву водородной бомбы. Во всем остальном антиподы схожи: у антивещества есть масса, на него в полной мере распространяются законы физики, вот только электрический заряд у него противоположен.

У антипротона он отрицателен, а у позитрона (антиэлектрона) — положителен. А еще антивещество практически не встречается в окружающей нас действительности.

Или все-таки оно где-то есть? Ничего невозможного в таком допущении нет, живем же мы на свете, хоть нам и нельзя пожать руку своим антиподам. Вполне возможно, что и они тоже где-то живут.

Вероятно, все наблюдаемые на сегодня галактики состоят из обычного вещества. В противном случае их границы были бы зоной практически непрерывной аннигиляции с окружающей материей, ее было бы видно издалека. Земные обсерватории регистрировали бы кванты энергии, образовавшиеся при аннигиляции. Пока этого не происходит.

Свидетельством присутствия во Вселенной заметных количеств антивещества могло бы стать обнаружение где-то в космосе (на Земле, ввиду большой плотности вещества, искать явно бесполезно) ядер антигелия. Два антипротона, два антинейтрона.

Составляющие такое ядро античастицы регулярно рождаются при столкновениях высокоэнергетичных частиц в земных ускорителях и естественным путем при бомбардировке вещества космическими лучами. Их обнаружение ни о чем нам не говорит. А вот антигелий может образоваться таким же образом, если в одном месте одновременно родятся четыре составляющие его частицы.

Это нельзя назвать совсем невозможным, но такое событие во всей Вселенной случается примерно раз в пятнадцать миллиардов лет, что вполне сопоставимо со временем ее существования.

Подготовка к запуску аэростата с детектором космических частиц в рамках эксперимента BESS. Детектор виден на переднем плане, его масса – 3 тонны. / © i.wp-b.com

Поэтому обнаружение антигелия вполне может расцениваться если не как привет от антиподов, то как свидетельство того, что где-то в пучинах космоса плавает кусок антивещества приличных размеров. Вот оно оттуда и прилетело.

Увы, неоднократные попытки поискать антигелий в верхних слоях земной атмосферы или на подходе к ней пока не принесли успеха. Конечно, это тот случай, когда «отсутствие следов пороха на руках ничего не доказывает».

Вполне может быть, что лететь было просто очень далеко (порядка миллиардов световых лет), а попасть в небольшой детектор на маленькой планете еще сложнее.

И уж точно, если бы детектор был чувствительнее (и дороже), наши шансы на успех были бы выше.

Антизвезды, случись им быть в природе, в ходе термоядерных реакций порождали бы такой же поток антинейтрино, как и обычные звезды — поток их антиподов. Такие же антинейтрино должны образовываться при взрывах антисверхновых. Пока ни то, ни другое не обнаружено, но, надо заметить, что нейтринная астрономия вообще делает первые шаги.

Детектор Sudbury Neutrino Observatory (SNO), Канада. / © squarespace.com

В любом случае пока мы не обладаем достоверной информацией о существовании сколько-нибудь заметных количеств антивещества во Вселенной.

Это плохо и хорошо одновременно. Плохо потому, что, по современным представлениям, в первые мгновения после Большого взрыва образовалось и вещество, и антивещество. Впоследствии они аннигилировали, породив реликтовое космическое излучение.

Количество фотонов в нем очень велико, оно примерно в миллиард раз превышает количество барионов (т. е. протонов и нейтронов) во Вселенной. Иными словами, когда-то, в начале времен, вещества во Вселенной оказалось на одну миллиардную долю больше, чем антивещества.

Потом все «лишнее» исчезло, аннигилировав, а одна миллиардная доля осталась. Получилось то, что в специальной литературе называется барионной асимметрией.

Для физиков отсутствие равновесия — это проблема, потому что его надо как-то объяснить. По крайней мере, в случае с предметами, которые во всех иных отношениях ведут себя симметрично.

А для нас (включая физиков) это хорошо, поскольку при одинаковых количествах вещества и антивещества произошла бы полная аннигиляция, Вселенная была бы пуста, и задаваться вопросами было бы некому.

Наличие большой космологической проблемы было осознано учеными где-то к середине XX века. Условия, при которых Вселенная становится такой, какой мы ее видим, были сформулированы Андреем Сахаровым в 1967 году и с тех пор являются «общим местом» тематической литературы, по крайней мере, на русском и английском языках. В сильно упрощенном виде они выглядят так.

Во-первых, при каких-то условиях, вероятно, существовавших в ранней Вселенной, законы физики все-таки неодинаково работают для вещества и антивещества.

Во-вторых, при этом может не сохраняться барионное число, т. е. количество барионов после реакции не равно тому, что было до нее.

В-третьих, процесс должен протекать взрывным образом, т. е. быть неравновесным. Это существенно, поскольку в равновесии концентрации веществ стремятся к выравниванию, а нам нужно получить нечто разное.

А.Д.Сахаров, конец 1960 годов. / © thematicnews.com

На этом общепризнанная часть объяснения заканчивается, далее и через полвека властвуют гипотезы. Наиболее авторитетная на данный момент связывает произошедшее с электрослабым взаимодействием. Посмотрим на нее поближе.

Для объяснения того, что же все-таки произошло с нашей материей, нам придется напрячь воображение и представить себе, что во Вселенной существует некое поле.

О его существовании и свойствах мы пока не знаем ничего, кроме того, что оно связано с распределением вещества и антивещества в пространстве и до некоторой степени похоже на привычную нам температуру, в частности может принимать большие и меньшие значения, до определенного уровня, который можно уподобить температуре кипения.

Первоначально материя во Вселенной находится в перемешанном состоянии. Вокруг очень «горячо» — кавычки здесь можно было бы и опустить, поскольку обычная температура тоже очень высока, но мы-то говорим о ее воображаемом аналоге. Этот аналог «кипит» — значение максимально.

По мере расширения пространства из первоначального «пара» начинают конденсироваться «капли», в которых «попрохладнее». Пока все выглядит совершенно так же, как с водой — если перегретый пар находится в сосуде, объем которого достаточно быстро увеличивается, то происходит адиабатическое охлаждение. Если оно достаточно сильно, то часть воды выпадет в виде жидкости.

Вода, сконденсировавшаяся из пара. / © 3.bp.blogspot.com

Нечто похожее происходит и с материей в космосе. По мере роста объема Вселенной количество и размер «капель» увеличиваются. А вот дальше начинается то, что не имеет аналогий в привычном нам мире.

Условия проникновения в «капли» частиц и античастиц оказываются неодинаковыми, частицам сделать это немножко проще. В результате первоначальное равенство концентраций нарушается, в сконденсировавшейся «жидкости» оказывается немножко больше вещества, а в «кипящей фазе» — его антипода. Совокупное число барионов при этом пока не меняется.

А дальше, в «кипящей фазе», начинают действовать квантовые эффекты взаимодействующих электрослабых полей, которые вроде бы не должны изменять количество барионов, но в действительности выравнивают количество частиц и античастиц.

Строго говоря, этот процесс идет и в «каплях» тоже, но там он менее эффективен. Таким образом, общее количество античастиц уменьшается.

Это написано коротко и, конечно, очень упрощенно, на самом деле все куда интереснее, но вдаваться в теорию глубоко мы сейчас не станем.

Ключевыми для объяснения ситуации оказываются два эффекта. Квантовая аномалия электрослабых взаимодействий — это наблюденный факт, он обнаружен еще в 1976 году. Разница в вероятности проникновения частиц в зону конденсации — факт расчетный и, следовательно, гипотетический. Само поле, которое «кипит», а затем остывает, пока не обнаружено.

При формировании теории предполагалось, что это — поле Хиггса, но после открытия знаменитого бозона выяснилось, что оно тут не при чем. Вполне возможно, что его открытие еще ждет своего часа. А может быть, и нет — и тогда космологам придется изобретать другие объяснения. Вселенная ждала этого пятнадцать миллиардов лет, может подождать и еще.

Антивещество

Антивещество – все о космосе

Это для нас добром не кончится. Но — в отличие от большинства сценариев с «антивеществом» — конец будет удивительно постепенным и затянутым.

Теория относительности предлагает множество вероятных БЫСТРЫХ, но все так же затянутых концов. Спасибо, наука!

Насколько можно судить, вся Вселенная состоит из вещества.

Никто точно не знает, почему вещества больше, чем антивещества, ведь законы физики довольно симметричны, и поэтому нет оснований ожидать, что одного будет больше, чем другого[1].

↲Хотя, если уж на то пошло, нет никаких оснований вообще чего-либо ожидать.

Целые галактики, состоящие из антивещества, — вполне возможно; мы могли не замечать этого, потому что не пробовали их потрогать. Идея крута, но если существуют области вещества и области антивещества, то границу между ними должно выдавать гамма-излучение. Мы его пока не видели, хотя очередной телескоп может это исправить.

Мы подадим отдельную заявку на грант по поискам выключателя Вселенной, а затем построим гигантскую радиоуправляемую руку, чтобы нажать его.

Если остальная Вселенная превратится в антивещество, нам будет худо.

Открытый космос, вопреки представлениям, не так уж пуст[2]↲Впрочем, при этом он действительно вполне «открыт».↳ — он полон разреженного газа[3]↲Строго говоря, это плазма.↳[4]↲Строго говоря, еще там значительное количество твердых пылинок.

↳[5]↲Слушайте, там просто куча крохотных частичек, которые сложно разглядеть, идет?↳[6].↲Ладно, иногда не так уж и сложно.

Магнитное поле Земли защищает нас от солнечного ветра, и с антисолнечным справилось бы тоже. Крохотная доля частиц, летящих от Солнца, все же достигают Земли, просачиваясь через магнитное поле и вызывая полярные сияния. В нашем сценарии сияние станет намного ярче, но в большинстве случаев не настолько, чтобы создать проблемы.

Настоящей проблемой станут метеориты.

Во время своего путешествия по орбите Земля собирает космическую пыль[7].↲К несчастью для нас, антивещество, по всей видимости, притягивается к веществу силой тяжести.↳ Примерно 100 тонн пыли в день вовлекается в атмосферу в виде крохотных песчинок, весящих в основном около 10-5 г. Кроме того, примерно такой же средний вес падает за день в виде гигантских булыжников, единовременно.

Приток пыли из антивещества столкнется с верхними слоями атмосферы и станет аннигилировать. Произойдут сложные взаимодействия ядер с антиядрами и протонов с антипротонами[8],↲Много энергии заберут нейтрино.

↳ но в конце концов возникнет мощное гамма-излучение, которое перейдет в большое количество тепловой энергии.

Это будет равномерный поток (сильнее всего он будет на рассвете, когда из-за движения Земли ваш дом окажется у него на пути).

Теплового и светового излучения, привнесенного антивеществом, скорее всего, будет более чем достаточно для того, чтобы запустить на Земле неконтролируемый парниковый процесс, который превратит Землю в подобие Венеры.

Но большие астероиды успеют добить нас раньше. Даже относительно маленькие тела вроде метеорита Челябинск высвободят столько энергии, сколько метеорит, погубивший динозавров[9].

↲Хотя эта энергия высвободилась бы в верхних слоях атмосферы, так что, наверное, это было бы не так уж ужасно.

↳ А вот если бы довольно большие астероиды, залетающие в атмосферу каждые несколько месяцев и остающиеся незамеченными, состояли из антивещества, то любой из них вызвал бы колоссальный выброс энергии в небе, и разразилась бы чудовищная огненная буря[10].

↲Если метеор из антивещества достаточно велик, встреча с облаком, вероятно, не разрушая полностью, отбросит его частично назад. Однако сложно вообразить, как именно это все произойдет в атмосфере Земли — разве что метеор такой большой, что все равно уничтожит планету.

Сейчас никто еще не знает, сколько процентов антивещества в космосе. Вероятно, не очень много, но, чтобы удостовериться, надо сконструировать новый орбитальный телескоп для исследования гамма-излучения.

Однако с помощью телескопа очень просто исключить один вариант: в космосе все состоит из антивещества.

«Куда вы дели два миллиона долларов, полученных по гранту?»

Если у вас есть телескоп, вы можете даже опубликовать этот результат.

Структура Вселенной. Что есть вещество и антивещество. Документальный фильм про космос HD 21.03.2017

Антивещество – все о космосе

Если Вы сам деятель науки или просто любознательный человек, и Вы частенько смотрите или читаете последние новости в сфере науки или техники. Именно для Вас мы создали такой раздел, где освещаются последние новости мира в сфере новых научных открытий, достижений, а также в сфере техники. Только самые свежие события и только проверенные источники.

В наше прогрессивное время наука двигается быстрыми темпами, так что не всегда можно уследить за ними. Какие-то старые догмы рушатся, какие-то выдвигаются новые.

Человечество не стоит на месте и не должно стоять, а двигателем человечества, являются ученые, научные деятели.

И в любой момент может произойти открытие, которое способно не просто поразить умы всего населения земного шара, но и в корне поменять нашу жизнь.

Особая роль в науке выделяется медицине, так как человек, к сожалению не бессмертен, хрупок и очень уязвим к всякого рода заболеваниям. Многим известно, что в средние века люди в среднем жили лет 30, а сейчас 60-80 лет.

То есть, как минимум вдвое увеличилась продолжительность жизни. На это повлияло, конечно, совокупность факторов, однако большую роль привнесла именно медицина. И, наверняка 60-80 лет для человека не предел средней жизни.

Вполне возможно, что когда-нибудь люди перешагнут через отметку в 100 лет. Ученые со всего мира борются за это.

В сфере и других наук постоянно ведутся разработки. Каждый год ученые со всего мира делаю маленькие открытия, потихоньку продвигая человечество вперед и улучшая нашу жизнь. Исследуется не тронутые человеком места, в первую очередь, конечно на нашей родной планете. Однако и в космосе постоянно происходят работы.

Среди техники особенно рвется вперед робототехника. Ведется создание идеального разумного робота. Когда-то давно роботы – были элементом фантастики и не более. Но уже на данный момент некоторые корпорации имеют в штате сотрудников настоящих роботов, которые выполняют различные функции и помогают оптимизировать труд, экономить ресурсы и выполнять за человека опасные виды деятельности.

Ещё хочется особое внимание уделить электронным вычислительным машинам, которые ещё лет 50 назад занимали огромное количество места, были медленными и требовали для своего ухода целую команду сотрудников.

А сейчас такая машина, практически, в каждом доме, её уже называют проще и короче – компьютер. Теперь они не только компактны, но и в разы быстрее своих предшественников, а разобраться в нем может уже каждый желающий.

С появлением компьютера человечество открыло новую эру, которую многие называют «технологической» или «информационной».

Вспомнив о компьютере, не стоит забывать и о создании интернета. Это дало тоже огромный результат для человечества. Это неиссякаемый источник информации, который теперь доступен практически каждому человеку. Он связывает людей с разных континентов и молниеносно передает информацию, о таком лет 100 назад невозможно было даже мечтать.

В этом разделе, Вы, безусловно, найдете для себя что-то интересное, увлекательное и познавательное. Возможно, даже когда-нибудь Вы сможете одним из первых узнать об открытии, которое не просто изменит мир, а перевернет Ваше сознание.

Ракеты на антивеществе

Антивещество – все о космосе

Физика будущего

Еще один вариант — использовать для звездолета антивещество, величайший источник энергии во Вселенной. Антивещество противоположно веществу в том смысле, что все составляющие части атома там имеют противоположные заряды.

К примеру, электрон обладает отрицательным зарядом, но антиэлектрон (позитрон) имеет положительный заряд. При контакте с веществом антивещество аннигилирует.

Энергии при этом выделяется так много, что чайной ложки антивещества хватило бы, чтобы уничтожить весь Нью-Йорк.

Антивещество — настолько мощная штука, что злодеи в романе Дэна Брауна «Ангелы и демоны» сооружают из него бомбу и собираются взорвать Ватикан; антивещество по сюжету они крадут в крупнейшем европейском центре ядерных исследований CERN, расположенном в Швейцарии недалеко от Женевы. В отличие от водородной бомбы, эффективность которой составляет всего 1 %, эффективность бомбы из антивещества составила бы 100 %. При аннигиляции вещества и антивещества энергия выделяется в полном соответствии с уравнением Эйнштейна: E=mc2.

В принципе, антивещество представляет собой идеальное ракетное топливо. Согласно оценке Джеральда Смита (Gerald Smith) из Университета штата Пенсильвания, 4 мг антивещества было бы достаточно, чтобы долететь до Марса, а сотня граммов донесла бы корабль до ближайших звезд.

При аннигиляции антивещества выделяется в миллиард раз больше энергии, чем можно получить из такого же количества современного ракетного топлива. Двигатель на антивеществе выглядел бы довольно просто. Можно просто впрыскивать частицы антивещества, одну за другой, в специальную камеру ракеты. Там они аннигилируют с обычным веществом, вызвав титанический взрыв.

Нагретые газы затем выбрасываются с одного конца камеры, создавая реактивную тягу.

Мы пока очень далеки от воплощения этой мечты. Ученые сумели получить антиэлектроны и антипротоны, а также атомы антиводорода, в которых антиэлектрон циркулирует вокруг антипротона.

Это было сделано и в CERN, и в Национальной ускорительной лаборатории имени Ферми (которую чаще называют Фермилаб) недалеко от Чикаго на теватроне, втором по величине ускорителе частиц в мире (крупнее него только Большой адронный коллайдер в CERN). В обеих лабораториях физики направили на мишень поток высокоэнергетических частиц и получили поток осколков, среди которых были и антипротоны.

При помощи мощных магнитов антивещество отделили от обычного вещества. Затем полученные антипротоны замедлили и позволили им смешаться с антиэлектронами, в результате чего получились атомы антиводорода.

Дэйв МакГиннис, один из физиков Фермилаба, очень долго и много думал о практическом использовании антивещества. Мы с ним стояли рядом с теватроном, и Дэйв объяснял мне обескураживающую экономику антивещества.

Единственный известный способ получить сколько-нибудь существенное количество антивещества, говорил он, — это воспользоваться мощным коллайдером вроде теватрона; но эти машины чрезвычайно дороги и позволяют получать антивещество лишь в очень малых количествах. К примеру, в 2004 г.

коллайдер в CERN выдал ученым несколько триллионных долей грамма антивещества, и обошлось это удовольствие ученым в 20 млн долларов. При такой цене мировая экономика обанкротится прежде, чем удастся получить достаточно антивещества на одну звездную экспедицию.

Сами по себе двигатели на антивеществе, подчеркнул МакГиннис, не представляют из себя ничего особенно сложного и уж наверняка не противоречат законам природы. Но стоимость такого двигателя не позволит реально построить его в ближайшем будущем.

Одна из причин такой бешеной дороговизны антивещества — громадные суммы, которые приходится выкладывать на строительство ускорителей и коллайдеров. Однако сами по себе ускорители — машины универсальные и используются в основном не для производства антивещества, а для получения всяких экзотических элементарных частиц. Это инструмент для физических исследований, а не промышленный аппарат.

Можно предположить, что разработка нового типа коллайдера, предназначенного специально для производства антивещества, могла бы намного снизить его стоимость. Затем массовое производство таких машин позволило бы получить значительное количество антивещества. Харольд Джерриш(Harold Gerrish) из NASA уверен, что цена антивещества может со временем опуститься до 5000 долларов за микрограмм.

Еще одна возможность воспользоваться антивеществом в качестве ракетного топлива заключается в том, чтобы найти в открытом космосе метеорит из антивещества.

Если бы такой объект нашелся, его энергии, скорее всего, хватило бы не на один звездолет. Надо сказать, что в 2006 г.

в составе российского спутника «Ресурс-ДК» запущен европейский прибор PAMELA, назначение которого — поиск естественного антивещества в открытом космосе.

Если в космосе удастся обнаружить антивещество, то для его сбора человечеству придется придумать что-нибудь вроде электромагнитной сети.

Так что, хотя межзвездные космические аппараты на антивеществе — идея вполне реальная и не противоречит законам природы, в XXI веке они скорее всего не появятся, разве что в самом конце века ученые смогут снизить стоимость антивещества до сколько-нибудь разумной величины. Но если это удастся сделать, проект звездолета на антивеществе наверняка будет рассматриваться одним из первых.

Следующие несколько месяцев полны для вас с Карен чудесных сюрпризов. Вы с ней идете в салон виртуальной реальности и развлекаетесь там, как дети, проживая целую жизнь, глупую и невероятную. Вы …

Всю неделю вы думаете о будущем свидании и, откровенно говоря, ждете его с нетерпением. Готовясь к встрече с Карен, вы вновь ощущаете себя школьником — даже удивительно, ведь ничего особенного …

День выдался ужасно долгим — сначала пришлось организовывать ремонтную бригаду из дистанционно управляемых роботов, затем отключать всех экспериментальных роботов, в которых установлены квантовые компьютеры, — по крайней мере до тех …

Есть ли в космосе антимиры из антивещества?

Антивещество – все о космосе

Ему, антивеществу, почти 14 миллиардов лет, сколько и нашей Вселенной. И ему, антивеществу, всего каких-то сто лет.

Почти ровно столько оно возникает в научных моделях, поверочных расчетах, смелых гипотезах, странных экспериментах.

Сто лет – на короткие мгновения – рождается в чуждом ему мире, где все пяди пространства вплоть до незримых планковских размерностей заполнены привычным для нас веществом, но никак не антивеществом.

Придумал эту странную субстанцию Поль Дирак в конце 1920-х годов. Он стремился объединить две крайности физической науки, две новомодные теории – общую теорию относительности Эйнштейна и квантовую теорию, «свести к единому знаменателю» Макрокосм и Микрокосм.

Однако, удивительным образом, в его уравнениях наряду с электронами получали право на жизнь и частицы, точь-в-точь похожие на них, но заряженные положительно, – неслыханная новация для классической физики.

С другой стороны, в математическом решении, предложенном Дираком, не было видно изъянов, а весь многовековой опыт приучил ученых к мысли о том, что математика – впрямь «царица наук». Что сказано на языке цифр, то не может быть неправдой!

Через несколько лет, в августе 1932 года, в одном из экспериментов «антиэлектрон» был действительно обнаружен. За свой положительный – позитивный – заряд он был удостоен имени «позитрон». Теперь известно, что у всех элементарных частиц есть свои антиподы – античастицы. Знаменитый немецкий физик Вернер Гейзенберг назвал открытие антивещества «самым неожиданным открытием XX века».

Так приотворилась дверца в неведомый мир, с которым мы прежде не соприкасались. Ведь любой контакт с ним гибелен. При встрече частиц и античастиц они аннигилируют, уничтожаются.

Когда в 1933 году Поль Дирак получал Нобелевскую премию, он произнес речь, в которой обмолвился, что Земля по случайности состоит из вещества, а не из антивещества.

«Возможно, – фантазировал он, – с некоторыми небесными телами все обстоит как раз наоборот».

Иными словами, в представлении Дирака, где-то в неизведанной космической дали свершали свой бег антипланеты, обращаясь вокруг антизвеад.

Что же подвигло британского ученого на столь смелый вывод? Ее величество Симметрия, пронизывающая все мироздание. С незапамятных времен философы всех народов почитают симметрию, являющую всякой сущности ее отражение, всякому естеству – его противоположность.

Полвека назад эта всепроникающая Симметрия лежала в основе современной космологии, описывавшей акт сотворения Вселенной – Большой взрыв. В это мгновение, когда Ничто превратилось в Нечто, родился в высшей степени симметричный объект. Вещества в нем было столько же, сколько и антивещества.

Однако эта же модель немедленно полагала предел мирозданию. Частицы встречались с античастицами, вещество с антивеществом – и аннигилировали, аннигилировали… Лишь гамма-вспышки проносились по вмиг опустевшему космосу.

Почему же в первые мгновения после Большого взрыва все частицы не уничтожились, встретившись со своими античастицами? Почему существует этот – такой реальный, такой зримый – мир, сложенный из элементарных частиц? Где затерялись их двойники?

Как оказалось, в нашей Вселенной изначально был изъян. По какой-то причине Великая Симметрия, рождающая и стирающая миры, нарушилась. Законы природы для частиц и античастиц стали разниться. Количество вещества превысило запасы антивещества. И после вселенского фейерверка, выжегшего, возможно, почти все антивещество, остался результат нарушения Симметрии – звезды, галактики, мы.

По общепринятому теперь сценарию (его творцом является А.Д. Сахаров), всего через миллионную долю секунды после Большого взрыва почти все вещество в нашем мироздании (99,99999999 %), погибло, соприкоснувшись с антивеществом. История сотворения Вселенной началась с истории ее разрушения.

Этот космический «судный миг» пережили, по некоторым оценкам, всего по одной элементарной частице из каждых 30 миллиардов. Все это – незримые семена, из которых пророс наш – такой необъятный – мир. Из этой горстки частиц соткана даль мироздания с ее гигантскими скоплениями галактик. Из крох, уцелевших в Микрокосме, возведен величественный Макрокосм.

Итак, мы обязаны своим существованием нарушению симметрии, этому дефекту законов природы? В Божественный план, по которому создавался космос, вкралась ошибка? Мир должен быть рожден так, как возникают в вакууме виртуальные пары частиц и античастиц, – возникают, чтобы сразу исчезнуть? Здесь это правило не сработало.

Сейчас антивещество можно встретить только в лабораторных экспериментах. Физики уже научились изготавливать атомы антиводорода, в которых вокруг отрицательно заряженного ядра обращается позитрон.

Однако они возникают всего на миллиардные доли секунды.

(Впрочем, в апреле 2011 года в ЦЕРН удалось в течение почти 17 минут при температуре, равной примерно 1 кельвину, удерживать 309 атомов антиводорода, что сулит прорыв в этой области исследований.)

Между тем космологи – вслед за Дираком – порой говорят о том, что, может быть, где-то в отдаленной области космоса и существуют огромные скопления антивещества, возникшего сразу после Большого взрыва.

Что, если оно не полностью уничтожилось в первые доли секунды космического творения? Что, если антивещество в нашей части космоса столь же редко, как где-то на далекой окраине Вселенной редко вещество? И все мироздание состоит на самом деле, как из «инь» и «ян», как из «положительного» и «отрицательного», – из двух несходных, несовместимых сущностей?

Антивещество, очевидно, тоже может создавать крупные структуры, как обычное вещество. Вступая в химические реакции, антиводород и антикислород образуют антиводу, антиуглерод и антиводород – органические антисоединения.

Антиатомы излучают свет, когда позитроны переходят с одной орбиты на другую.

Мы могли бы даже наблюдать звездные системы из антивещества с помощью телескопа, но не догадались бы об их «инаковости», ведь свет, приходящий от них, ничем не отличался бы от света обычных звезд.

В 1960 —1970-е годы нобелевский лауреат, американский физик Луис Альварес, подняв на высоту 4000 метров сверхпроводящие магниты на баллонах, выслеживал антивещество, проникавшее из космоса, но обнаружил лишь позитроны и пару антипротонов – всего около 40 тысяч частиц.

Однако, чтобы и впрямь найти антивещество, прилетевшее с антизвезд, нужно, считают ученые, проанализировать миллиарды частиц. Ведь лишь одна частица на 100 тысяч или даже миллион частиц, долетающих до Земли, прибывает из областей, лежащих за пределами Млечного Пути.

Наблюдая звездные системы из антивещества с помощью телескопа, можно не догадываться об их «инаковости»

Между тем даже крупица антивещества размером с горошину, попав в атмосферу нашей планеты, могла бы вызвать страшный взрыв. Так, еще один нобелевский лауреат, американский физик и химик Уиллард Либби, был убежден в том, что загадочный Тунгусский метеорит являлся сгустком антивещества, случайно достигшим окрестности нашей планеты. Может ли такая случайность повториться?

… Итак, прошло почти сто лет с тех пор, как мир узнал о возможном существовании антивещества. В последние десятилетия в научных лабораториях зрим сам факт его существования – горстки антиатомов, рои антиэлектронов. Возможно, в XXI веке ученые обнаружат естественные свидетельства его бытия: антизвезды, антигалактики.

Использование антивещества

Антивещество – все о космосе

Использование антивещества

         В 1916 г. А. Эйнштейн в ОТО (Общей теории относительности) показал, что время замедляется возле массивных тел и при движении. Он также сказал: «Если мы движемся со скоростью света, то время для нас не движется, а если мы стоим на месте, то время движется для нас со скоростью света».

Из этого можно предположить, что время движется относительно нас со скоростью света и движется – разнонаправлено из центра каждого тела. То есть из центра для любой точки во Вселенной. Поэтому время и относительно.

Можно отметить, что материя и порождает время, т. е. атомы излучают помимо фотонов (при переходе с одной орбиты на другую), также и кванты времени (хрононы), которые движутся из центра любой материи в  разные стороны со скоростью света!  

         Вероятно хронон имеет нулевую массу или же это волна наподобие электромагнитной.

         Здесь надо заметить, что данная гипотеза не противоречит принципу относительности времени в СТО А. Эйнштейна, поскольку с увеличением скорости (например, при V=c) ни одна частица не может двигаться быстрее скорости света и квант времени – тоже (для одного наблюдателя). И время будет быстро двигаться для другого наблюдателя – стоящего на месте.

Также можно сказать, почему при больших массах время также замедляется, согласно ОТО. Например, в чёрной дыре время равно нолю (не движется) – поскольку за пределы чёрной дыры не могут вырваться не только кванты света, но и кванты времени.

Также из этого следует, что если обычное вещество испускает кванты времени, направленные от прошлого к будущему, то, вероятно, что антивещество будет испускать кванты времени, обратной полярности – от будущего к прошлому! То есть время будет течь назад!

Антивещество уже получают и удерживают длительное время сейчас в ЦЕРНе.

Эту гипотезу подтверждает следующий факт.

         Как подсчитали учёные: на долю обычной (барионной) материи приходится примерно 4% от массы Вселенной, на долю излучёния – 1%, на долю тёмной материи – 25%, а на долю тёмной энергии – 70%.

         А как известно из работ А. Д. Сахарова обычная материя занимает всю Вселенную, поскольку при Большом взрыве аннигилировало примерно 50% вещества и 49% – антивещества. Остался примерно 1% материи, который мы и видим сейчас.

         Так может быть этот 1% материи и есть те 4% обычной (барионной) материи из которой и состоит Вселенная?! А 25% тёмной материи и 70% тёмной энергии – это остатки от Большого взрыва Вселенной – аннигиляции материи и антиматерии?! Тёмные частицы (нейтрино и WIMP-частицы) и космический вакуум (тёмная энергия)!?!

Поэтому антивещества во Вселенной сейчас – нет и стрела времени направлена в одну сторону: от прошлого к будущему!

Вот и решение космологической задачи, и вопроса отсутствия антивещества во Вселенной и однонаправленности стрелы времени!

Таким образом, вероятно, есть и возможность построения машины времени!

Adblock
detector