Космологическая сингулярность – все о космосе

Содержание

Сингулярность – что это такое?

Космологическая сингулярность – все о космосе

Космологическая сингулярность – все о космосе

Краткое содержание статьи:

Изучая тайну возникновения мироздания, один термин для многих остается загадкой, а именно – что такое сингулярность? С тех пор, когда впервые были обнаружены черные дыры, ученые задаются вопросом: что может находиться за гранью этой неисследованной пустоты? Было предложено множество теорий, объясняющих происхождение Вселенной: одни из них были математически доказаны, другие остаются в состоянии гипотез. Как раз про одну из них, вы сможете прочитать в нашем материале.

Большой взрыв: сингулярность нашей Вселенной

Консенсус астрономов, космологов, математиков и физиков, гласит – наша Вселенная возникла благодаря сверхмощному взрыву:

  • Начало. Приблизительно 13,8 миллиарда лет назад, необъяснимое «нечто» было уплотненно в очень маленькую (относительно) область – небольшой шар (диаметром около 35 метров). Условная сфера имела невероятную плотность и температуру, т.е. состояние, которое учеными сейчас называется сингулярностью;
  • Формирование. В определенный момент эта точка стала разрастаться – произошел «Большой взрыв». Гигантские облака элементарных частиц (будущие галактики) расширяются в пространстве, охлаждаются, и посредством гравитации образовываются звезды;

Что происходит сейчас? Вселенная продолжает расширяться.

Ученые NASA отмечают интересный факт – массивные формирования, состоящие из громадных звезд, медленно удаляются от нас. Одни гипотезы гласят, что расширяться Вселенная будет вечно, другие – она разрушит себя сама.

Гравитация, или как устроена черная дыра

До 1960 года о черных дырах говорили с улыбкой. Хоть теория относительности была математически обоснована, предложенные свойства пространства были настолько нереалистичны, что попросту всерьез не воспринимались.

Благодаря технологическому прогрессу и с появлением мощных телескопов, о черных дырах стали говорить как о возможной физической реальности:

  • Формирование. Основные физические свойства звезд характеризуются их высокой внутренней температурой и давлением. Эти факторы препятствуют процессу внутреннего сжатия звезды (ее разрушения). После того как термоядерные реакции полностью исчезают, материальная структура звезды стремится к своему центру. Когда плотность достигает трех солнечных масс, она превращается в черную звезду;
  • Анатомия. Что мы в итоге получаем? Огромная звезда трансформируется в черную дыру – модель, содержащую в себе параметры исходной звезды, но при этом физический размер отсутствует. Черная звезда имеет условную линию «горизонта событий», за пределами которой законы физики не действуют – начинается область сингулярности. Все, что попадает за этот барьер, «всасывается» черной дырой, и возврату не подлежит.

Так как черная дыра поглощает даже свет (ее невозможно осветить, увидеть), при их поиске астрономы полагаются только на косвенные методы – область должна быть затомлённая и иметь большую массу. Последние исследования порождают теорию, что в центре нашей галактики, существует массивная черная дыра.

На данный момент наша солнечная система находится далеко от «горизонта событий», но пройдут миллиарды лет, и наша планета будет втянута в сингулярность и прекратит свое существование.

Что такое сингулярность простыми словами?

В двух первых главах, мы рассмотрели космологическую и гравитационную сингулярности. Для полного осознания значений этих терминов, объясним их простыми словами:

  • Космологическая. Представьте себе теннисный мячик, имеющий запредельную внутреннюю плотность и бесконечно высокую температуру. При определенных условиях он взрывается. Физическая материя, в виде мельчайших частиц, освобождается и образуется условное облако пыли. Если вы сможете все собрать обратно (получить первоначальную структуру до взрыва) то получите точно такой же мячик. Так вот, момент взрыва именуют состоянием сингулярности;
  • Гравитационная. Данная сингулярность, как вы помните, связана с линией «горизонта событий». Представьте открытый канализационный люк. Вы бросаете в него камни. Промах – камень остался на земле, попадание – «снаряд» преодолел рубеж «горизонта событий», и попал в яму (зону сингулярности).

Говоря проще – сингулярность, это самый центр черной дыры, ее ядро, в которой не действуют никакие законы физики, в котором время протекает по совсем другим правилам, нам неизвестным.

К слову, если рассматривать гравитационную сингулярность, следует отметить, что наряду с черными, есть и белые дыры: в их область попасть невозможно.

Сингулярность: другие значения

Термин «сингулярность» еще встречается в:

  • Математике. Математическая функция переходит в такое состояние, когда ее значение стремится в бесконечность. Говорят: «сингулярность в точке ;
  • Технологиях. Технологический прогресс в отдельной области станет недоступен пониманию человека;
  • Компьютерной модификации. Технические и программные средства, достигнут такого уровня, при которых они начнут сами себя совершенствовать. Такой момент еще не наступил. По прогнозам это событие случится не ранее 2035 года.

Очень редко «сингулярность» применяют в биологии и философии, но основным направлением остается космологическое направление.

Технологическая сингулярность

Началом возникновения технологической сингулярности, ученые связывают с появлением искусственного интеллекта:

  • Интеллектуальные программы возьмут на себя функции, считавшиеся до этого прерогативой человека;
  • Резкий скачок в развитии точных наук будет непонятен человечеству.

Подобную картину, когда компьютерные системы вышли из-под контроля человека, предсказал режиссёр и автор сценария фильма «Терминатор» Джеймс Камерон.

Космология: 3 интересных факта

Задумывались ли вы о том, что:

  • Наше Солнце не вечно. Пройдет чуть более 7 миллиардов лет, и звезда нашей Солнечной системы остынет – образуется новая черная дыра, которая начнет поглощать Меркурий, Венеру и, естественно, нашу Землю;
  • В нашей галактике присутствуют сотни миллиардов звезд. Более того, в состав Вселенной входит более 500 миллиардов галактик. Можно сделать вывод: со 100% вероятностью, существует несколько миллионов систем, похожих на нашу Солнечную, а следовательно мы во Вселенной не одни.
  • Ближайшая к земле звезда (находится она на расстоянии в 4 световых года) – Проксима Центавра. Если человек, используя при этом самые современные космические технологии, захочет полететь к ней, его путь продлится более 70000 лет.
  • Слово «сингулярность» можно встретить в любом аспекте нашей жизни – математике, космологии, биологии и т.д. Если говорить о космологической сингулярности, то термин можно охарактеризовать как первичное состояние нашей Вселенной при Большом взрыве, когда наше мироздание находилось в одной маленькой точке, а все физические законы не имеют своей силы.

    Видео: в чем опасность данной аномалии?

    В этом ролике Станислав Володин расскажет про эффект сингулярности, в чем состоит ее опасность:

    Что такое сингулярность? Как она связана с гравитацией и черными дырами

    Космологическая сингулярность – все о космосе

    Пространство-время – та сцена, на которой разворачивается вся история Вселенной: с момента Большого Взрыва, через рождение Млечного Пути, Солнца и расцвет динозавров – к Александру Македонскому и электронным научно-популярным журналам.

    К нему часто добавляют слово континуум, от латинского «непрерывное» – но кое-где и пространство-время обрывается. Здесь теряют силу привычные законы физики. Здесь время выглядит иначе. Здесь даже нельзя сказать «здесь», поскольку здесь нет и пространства.

    Это – область нигде и никогда. Это – гравитационная сингулярность.

    Притяжение геометрии

    Со времен древних греков пространство казалось чем-то неизменным, постоянным, однородным, а время – не связанной с ним циклической спиралью вечного возвращения и повторения. К эпохе научно-технических революций эти представления лишь укрепились.

    Декартова система координат расчертила мир тремя взаимно перпендикулярными осями, время выпрямилось в отдельную, независимую от пространства (и вообще ни от чего) прямую стрелу.

    Во многом мы до сих пор живем в тех представлениях, возникших еще в XVIII веке.

    Революционность взглядов Эйнштейна во многом состояла в понимании двух важных фактов, переворачивающих взгляды и на время, и на пространство. Во-первых, они взаимосвязаны и представляют собой единый пространственно-временной континуум. А во-вторых, континуум этот вовсе не неизменен и не постоянен: он деформируется в присутствии любой формы энергии, в том числе – в виде массы.

    Классический способ представить этот обновленный Эйнштейном мир дает пример из геометрии. Представьте себе двухмерное пространство – туго натянутую сетку, на которую положен тяжелый бильярдный шар.

    Запустите мимо него теннисный мяч: шар немного растянул сетку, и мяч в своем движении отклонится, словно притянутый им, а возможно, даже «упадет» на него.

    Гравитация в эйнштейновском понимании может рассматриваться как геометрическое свойство пространства-времени, его искажение, возникающее под действием энергии (массы). Даже просто вращающееся массивное тело увлекает за собой «сетку» пространства-времени.

    Мысленно расширьте этот пример на четыре измерения (три пространственных плюс одно временное) – и вы получите примерную геометрическую модель реального пространства-времени. Обратите внимание: где есть масса (энергия) – там нет прямых координатных осей, да и само время перестает быть прямолинейным и равномерным для всех наблюдателей.

    Представление о прямой оказывается просто математической абстракцией: самая прямая вещь, которую мы знаем из физики, – это траектория светового луча, движение фотона – но и оно искажается под действием гравитации.

    Притянутая материя локально движется по прямой, однако в глобальном рассмотрении эта прямая в гравитационном поле оказывается кривой.

    Разрывая сети

    Но что если мы бросим на сетку из нашего геометрического примера не бильярдный шар, а что-нибудь потяжелее? Гантель, двухпудовую гирю. Скорее всего, наш демонстрационный экспонат не выдержит и лопнет, а в центре его останутся лишь дыра, нити, обрывки пространства-времени нашей модели. Нечто вроде сингулярности.

    Даже в философском смысле сингулярность – антоним континуальности (непрерывности, отсутствия лакун, квантованности, разделенности на фрагменты – NS). Сингулярность – нечто, происходящее лишь однажды. Точка, к которой события стремились, пока не разрешились уникальным исходом. Взрыв, слияние, освобождение.

    В точках сингулярности математические функции резко меняют свое поведение: устремляются в бесконечность, переламываются, внезапно обращаются в ноль. Если переменная Х стремится к нулю, а функция от Х – к бесконечности, знайте: вы уже в сингулярности.

    В области, где обрывается непрерывная (континуальная) геометрия пространства-времени – и происходит нечто совсем уж невообразимое.

    Удивительно, что Общая теория относительности сама обозначает границы своей применимости: в сингулярности «не работает» и она.

    При этом теория не только указывает на саму возможность существования гравитационных сингулярностей, но в некоторых случаях делает их вообще обязательными.

    Речь, в частности, о черных дырах – объектах колоссальной плотности, которая делает их невероятно массивными для своих размеров.

    Черная дыра может иметь массу, сравнимую с массой крупной планеты или с миллиардом крупных звезд, но эта масса определяет лишь величину той области вокруг нее, где царит одна лишь гравитация – и откуда не вырваться ничему, ни веществу, ни излучению, ни информации. Размер этой «области невозврата» называется радиусом Шварцшильда, а ограничивает ее горизонт событий, условная линия, по одну сторону которой Вселенная живет своими законами, а по другую властвует сингулярность.

    Гравитационная плюс космологическая

    Принято говорить, что в сингулярности «законы физики теряют силу». Это не так – просто привычные законы здесь неприменимы, как неприменимы законы классической механики к миру квантовых частиц.

    По красочному выражению немецкого профессора Клауса Уггла, поведение математических уравнений и функций в сингулярности «становится патологическим».

    Заметить этот момент достаточно просто – достаточно наблюдать поведение свободно падающих частиц.

    Независимо ни от вида самой частицы, ни от того, где именно она падает, она стремится двигаться по максимально прямой траектории, которая только существует в данных условиях.

    В пустом космосе, у поверхности Земли или за границей горизонта событий частица меняет траекторию лишь под действием других сил, в том числе гравитации.

    Но в сингулярности гравитационное поле возрастает до бесконечности, и свободно падающая частица просто… перестает существовать.

    Прямые здесь обрываются (это свойство сингулярности называется геодезической неполнотой), а с ними обрывается и судьба частицы. Как показал еще около 40 лет назад великий математик Роджер Пенроуз, геодезическая неполнота должна возникать внутри любой черной дыры. Впоследствии его выкладки развил Стивен Хокинг, расширив эти представления до целой Вселенной.

    Да, вначале была сингулярность. Еще в 1967 году Хокинг строго доказал, что если взять любой вариант решения уравнений Общей теории относительности и «развернуть их» назад во времени, то при любом раскладе в расширяющейся Вселенной мы придем к ней, к сингулярности. Из бесконечного провала этой «космологической праматери» и распустился цветок нашего пространства-времени.

    Впрочем, при всей своей красоте «теоремы сингулярности Пенроуза – Хокинга» лишь указывают на возможность их существования. О том же, что происходит там, внутри, что можно «увидеть» в сердце черной дыры и чем была Вселенная до Большого Взрыва, они не говорят ровным счетом ничего.

    Возьмем хотя бы космологическую сингулярность Хокинга: она должна иметь одновременно бесконечную плотность и бесконечную температуру, совместить которые пока никак не получается.

    Ведь бесконечная температура означает бесконечную энтропию, меру хаоса системы – а бесконечная плотность, наоборот, указывает на хаос, стремящийся к нулю.

    Сингулярность оголяется

    Впрочем, это далеко не единственная странность вокруг сингулярности. Среди диковинных гипотез, построенных на строгой основе общей тео­рии относительности, стоит вспомнить идею существования «голых сингулярностей» – не окруженных горизонтом событий, а значит и вполне наблюдаемых извне.

    По мнению некоторых физиков, голая сингулярность может появляться из обычной черной дыры. Если черная дыра вращается чрезвычайно быстро, сингулярность вместо точки может приобрести кольцеобразную форму тора, окруженного горизонтом событий. Чем быстрее дыра вращается, тем сильнее сходятся внешний и внутренний горизонты – и в какой-то момент они могут слиться, исчезнув.

    К сожалению, в реальности наблюдать голую сингулярность пока не удается, зато в фантастике она встречается регулярно. Одна из населенных разумными существами колоний в культовой киносаге «Звездный крейсер «Галактика» вращается не вокруг звезды или планеты, а вокруг такой голой сингулярности.

    Стоит сказать, что Роджер Пенроуз ввел в космологию принцип космической цензуры, предположение, согласно которому голых сингулярностей во Вселенной быть не может. Ученый образно сформулировал свой подход: «Природа не терпит голых сингулярностей». Этот принцип до сих пор остается недоказанным и не опровергнутым окончательно.

    Как (не) попасть в сингулярность

    Рассуждая логически, можно прий­ти к выводу о том, что оказаться внутри сингулярности мы не сможем никогда – вплоть до момента окончательной гибели Вселенной. Давайте представим частицу, притянутую черной дырой.

    Вот она, ускоряясь, по спирали приближается к ней. Чем сильнее гравитация и выше скорость, тем, согласно уравнениям того же Эйнштейна, сильнее замедляется течение времени.

    Наконец наша частица пересекает горизонт событий.

    Сколько у нее ушло на это времени? Для стороннего наблюдателя это могут быть годы. Но вот частица устремляется к сингулярности в центре дыры – пространство-время вокруг нее буквально встает на дыбы, время для частицы практически останавливается. Можно представить это и наоборот: время Вселенной в сравнении с ней ускоряется практически бесконечно.

    Но ведь даже черные дыры не вечны.

    Как показал Стивен Хокинг еще в 1970-х, в результате сложной игры гравитации и квантовых эффектов у горизонта событий все черные дыры понемногу испаряются и рано или поздно исчезают.

    Быть может, исчезнет и частица, так и не добравшись до сингулярности. Но тут снова появляются парадоксы почище тех, что встретились Алисе в Стране Чудес. Например – где же находится эта частица?

    С точки зрения теоретической физики, черные дыры – пустые. Да, их ограничивает горизонт событий, но за ним нет ничего, что можно было бы измерить, обозначить, зафиксировать – а значит, нет ничего вообще. Вся масса черной дыры сосредоточена в сингулярности – бесконечно малой точке, окруженной сферой, полной почти метафизической тьмы.

    Что у нее внутри?

    Некоторые теоретики полагают, что Вселенная не терпит не только голой сингулярности, но и разрывов пространства-времени.

    Поэтому каждая сингулярность является червоточиной – своего рода провалом, туннелем, соединяющим одну область мира с какой-то другой «прямым ходом», образно называемым «кротовой норой» или «червоточиной».

    Но это лишь гипотеза, и неизвестно, появится ли у нас когда-нибудь хотя бы возможность подтвердить ее или опровергнуть.

    Главный вопрос остается: что там, внутри сингулярности? Что наступает после того, как сама ткань пространства-времени мнется, растягивается, дыбится, пока не разрывается окончательно? Ответить на него проще простого: неизвестно.

    naked-science.ru

    О сингулярности большого взрыва

    Космологическая сингулярность – все о космосе

    Сегодня во многих публикациях сингулярность Большого взрыва (БВ) преподносится как некая физическая сущность начального состояния Вселенной, момент её возникновения из ничтожно малой области (точки), имеющей бесконечно большие значения плотности вещества и температуры.

    Такая физическая трактовка сингулярности, как начало начал возникновения Вселенной, по-существу, мало чем отличается от концепции сотворения мира Творцом из ничего

    Правда есть и другие воззрения на этот счет, в частности, о цикличности развития Вселенной, не лишенные оснований.

    Порассуждаем об этом понятии – сингулярность Большого взрыва

    Начнем с определений.

    В Интернет-энциклопедии «Википедия» сказано следующее (привожу с сокращениями, дабы не погружаться чрезмерно в детали).

    Сингулярность (от лат. singularis «единственный, особенный»). К примеру, математическая сингулярность (особенность) — точка, в которой математическая функция стремится к бесконечности или имеет какие-либо иные нерегулярности поведения.

    Космологическая сингулярность — состояние Вселенной в начальный момент Большого Взрыва, характеризующееся бесконечной плотностью и температурой вещества.

    Возникновение этой сингулярности при продолжении назад во времени любого решения общей теории относительности (ОТО), описывающего динамику расширения Вселенной, было строго доказано в 1967 году Стивеном Хокингом.

    Также он писал – «Результаты наших наблюдений подтверждают предположение о том, что Вселенная возникла в определённый момент времени.

    Однако сам момент начала творения, сингулярность, не подчиняется ни одному из известных законов физики».

    Сингулярности не наблюдаются непосредственно и являются, при нынешнем уровне развития физики, лишь теоретическим построением. Считается, что описание пространства-времени вблизи сингулярности должна давать квантовая гравитация.

    Из приведенных выше определений следует, что, первое:

    сингулярности при нынешнем уровне развития физики являются лишь теоретическим построением

    и второе – сингулярность, не подчиняется ни одному из известных законов физики

    Отсюда можно заключить, что

    КОСМОЛОГИЧЕСКАЯ СИНГУЛЯРНОСТЬ – это математическая абстракция, не имеющая достоверной физической интерпретации

    Науке пока не известно, что происходит с веществом при его, условно говоря, неограниченном сжатии, когда плотность и температура достигают Планковских значений, или возможно их превышают.

    Воспроизвести на Земле условия подобного сжатия, чтобы экспериментально что-то изучить и проверить, технически невозможно, даже в обозримой перспективе.

    Такого рода условия создаёт только сама Природа, её величество Гравитация, порождая во Вселенной сверхсжатые объекты, так называемые черные дыры (ЧД).

    Физика процессов, происходящих с веществом внутри черной дыры, остается загадкой для науки

    Нет и теории, математического описания подобного рода процессов. Определенные надежды связывают с разработкой теории квантовой гравитации, но создать её пока не удаётся.

    Зато можно, в отсутствие научной теории, выдвигать гипотезы, строить различные догадки и предположения.

    Физическая трактовка сингулярности БВ – Предположение

    С учетом вышеизложенного почему бы не предположить, что

    Большой взрыв явился следствием перехода вещества сверхмассивной («созревшей») черной дыры в иное фазовое состояние

    Есть ли основания для такого рода предположения? Судите сами.

    Первое – вещество Вселенной эволюционирует между, условно говоря, двумя полюсами: от максимально разреженного «пустого» пространства до предельно сжатого состояния черной дыры, находясь в зависимости от условий в той или иной промежуточной стадии, как-то газообразном, жидком, твердом состоянии.

    Второе – в черных дырах, этих гравитационных пылесосах Вселенной, сосредоточены огромные массы материи.

    По данным Википедии: масса самой тяжёлой сверхмассивной чёрной дыры, обнаруженной в галактике NGC 4889, составляет около 21 млрд солнечных масс, чёрная дыра в квазаре OJ 287 имеет массу 18 млрд и чёрная дыра в центре галактики NGC 1277 — 17 млрд солнечных масс. Эти массы вполне сопоставимы с массой целых небольших галактик.

    Ещё одна сверхмассивная чёрная дыра, Q0906+6930 массой в 10 млрд масс Солнц, расположена в созвездии Большой Медведицы на расстоянии 12,7 млрд световых лет от Земли.

    Третье – возраст нашей Вселенной оценивается в 13,8 млрд лет. У многих ученых возникает вопрос, как могли появиться столь массивные черные дыры на столь ранней стадии эволюции Вселенной. А если предположить, что черные дыры существовали и до Большого взрыва, который лишь привел к образованию Вселенной, как локального фрагмента Мироздания?

    Четвертое – существенным является также то, что черные дыры непрерывно наращивают свою массу, как за счет поглощения ими звезд и межзвездного вещества, так и путем слияния друг с другом, и чем может завершиться такой процесс увеличения массы черных дыр никто пока достоверно не знает.

    Чтобы лучше себе представлять о каких фантастических, по нашим обыденным земным представлениям, массах вещества идет речь, стоит напомнить, что масса планеты Земля оценивается приблизительно в 5,98 секстиллионов тонн. Вот как выглядит это число:

    5 980 000 000 000 000 000 000 тонн или 5,98·1024 кг.

    Причем, с каждым годом Земля становится все тяжелее: на нее оседает примерно тридцать тысяч тонн космической пыли в год. Масса же Солнца превышает массу Земли почти в 333 тысячи раз, и составляет приблизительно 1,99·1030 кг. Черные дыры, упомянутые выше, в миллиарды, десятки миллиардов раз по массе больше Солнца.

    Для наглядности, если принять за единицу массу Земли, то в сравнении получаем:

    Земля
    Солнце
    Черная дыра(20 млрд масс Сoлнца)

    1
    333 000
    6 660 000 000 000 000

    Что уж тогда говорить о массе вещества всей наблюдаемой Вселенной, оцениваемой более чем в 1050 тонн? Трудно себе представить, чтобы все это вещество появилось из ничтожно малой точки – сингулярности Большого взрыва.

    Пятое – если переместиться во времени обратно к начальной точке БВ, или, как говорят в кинематографе, отмотать пленку назад, то получим то, что называется Большое сжатие — один из возможных сценариев будущего Вселенной. По этому сценарию расширение Вселенной со временем меняется на сжатие, и Вселенная коллапсирует, в конце концов «схлопываясь в сингулярность (из Википедии)».

    Сжимающаяся Вселенная будет разбиваться на отдельные изолированные группы. Вся материя коллапсирует в чёрные дыры, которые затем будут срастаться, создавая в результате единую чёрную дыру – сингулярность Большого сжатия (из Википедии).

    И вот эта черная дыра с массой всей Вселенной превращается в стремящуюся к нулю точку с бесконечными плотностью вещества и температуры? То есть в то, что выше определено, как «схлопываясь в сингулярность»? Впечатляет, но едва ли способствует пониманию физической природы такого процесса.

    Моё предположение:

    СИНГУЛЯРНОСТЬ БОЛЬШОГО ВЗРЫВА – это математически абстрактное (вырожденное) описание центральной точки черной дыры в момент достижения ею под действием гравитационных сил сжатия критических значений плотности и температуры, достаточных для возникновения и развития процесса скачкообразного перехода материи (вещества) черной дыры в иное фазовое состояние

    Такой переход материи в иное фазовое состояние будет сопровождаться высвобождением колоссальной энергии в виде сгустка излучения, распространяющегося со световой (фотоны) скоростью.

    Последователи модели БВ могут сказать, что Большой взрыв совсем не то, что обычно понимается как резкое возрастание давления с внезапным высвобождением энергии в определенной точке или области пространства, а это взрыв, который произошел одновременно везде, заполнив с самого начала все пространство.

    Но что значит ВЕЗДЕ? Если Вселенная, следуя модели БВ, вначале занимала небольшой объем, а затем произошло её резкое (экспоненциально ускоренное) инфляционное расширение, то логично считать, что ВЕЗДЕ – это в относительно небольшой изначальной области, предшествующей последующему инфляционному расширению.

    Также и для сверхгигантской черной дыры, вобравшей в себя всё вещество Вселенной (а возможно, только локального фрагмента или локальной Вселенной, или части локальной Вселенной), взрыв будет ВЕЗДЕ в пределах занимаемого ЧД объема, который может быть весьма значительным.

    При этом распространяющаяся со световой скоростью область взрыва – излучение с температурой в тысячи миллиардов градусов чем это не инфляционное расширение?

    В дальнейшем же, по мере остывания этой расширяющейся области излучения, рождаются и взаимодействуют различные элементарные частицы с последующим образованием из них вещества, звезд, планет и т.д., всё в соответствии с космологической моделью Большого взрыва.

    Приведенная физическая интерпретация начального момента БВ представляется мне не совсем лишенной смысла, и к тому же более естественной для восприятия, чем просто математически абстрактное понятие сингулярности.

    Мнение ученого

    Известный ученый-космолог, знаменитый физик, Нобелевский лауреат Стивен Вайнберг в своих книгах «Первые три минуты», «Мечты об окончательной теории» подробно и доходчиво объясняет физику процессов, происходивших начиная с одной сотой доли секунды после Большого взрыва, процессов, которые в итоге привели к образованию нашей сегодняшней Вселенной. Однако столь же ясное физическое понимание того, что происходило в более ранний (до одной сотой секунды) промежуток времени, по его мнению, является затруднительным в силу ряда причин. Вот как об этом пишет сам С. Вайнберг (фрагменты из его книги «Первые три минуты»):

    Незнание микроскопической физики стоит как пелена, застилающая взор при взгляде на самое начало.

    Тем не менее мы можем, по крайней мере, вообразить момент времени, когда гравитационные силы были столь же велики, как и сильные ядерные взаимодействия… .

    При сверхвысоких температурах энергия частиц в тепловом равновесии может стать так велика, что силы тяготения между ними станут такими же большими, как и любые другие силы.

    Можно оценить, что такое положение будет достигнуто при температуре около 100 миллионов миллионов миллионов миллионов миллионов градусов (1032 К). (А.Ч.: 1032 К – Планковская температура).

    Мы слишком мало знаем о квантовой природе гравитации даже для того, чтобы делать разумные предположения об истории Вселенной до этого времени.

    Одна возможность заключается в том, что на самом деле никогда не было состояния бесконечной плотности. Теперешнее расширение Вселенной могло начаться в конце предыдущей эры сжатия, когда плотность Вселенной достигала какого-то очень большого, но конечного значения.

    ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

    1. ПЕРВЫЕ ТРИ МИНУТЫ

    2. Такой привычный Большой взрыв

    Что такое сингулярность

    Космологическая сингулярность – все о космосе

    Каждый, кто сталкивался с термином «сингулярность», стремился осознать, а что же это такое? Если сделать дословный перевод с латыни, то окажется, что это единичность какого-то события, существа, явления. Понятие сингулярности (особенности) распространено во многих областях науки и техники, и обладает определённой специфичностью. В зависимости от этого, сингулярность может быть:

    • математической;
    • гравитационной;
    • космологической;
    • технологической;
    • биологической.

    Но если смотреть более философски, то сингулярность — это всё мироздание в крошечной точке. И это не только всё вещество Вселенной, но и наша жизнь, с её осознанием, значимостью и чувствами.

    Космологическая сингулярность

    Иначе, это то состояние, которое имела Вселенная в самый первый миг Большого взрыва. Оно характеризуется наличием бесконечных значений плотности и температуры вещества. Это состояние, ставшее примером сингулярности гравитационной, предсказано Эйнштейном в положениях общей теории относительности.

    Невероятно сложно представить, что Солнце можно  сжать до размеров атомного ядра, но ещё труднее вообразить, что вся Вселенная была спрессована до точки, размер которой был много меньше этого ядрышка. Тем не менее, Вселенная возникла из такого объекта, именуемого сингулярностью.

     Этот вариант событий математически просчитан и является основной теорией возникновения окружающего мира. Но имеются определённые трудности, не объясняемые этой теорией.

  • Никто не знает, где именно располагалась та точка, из сердцевины которой родилась наша Вселенная.
  • Не понятно, каким образом эта особенность «родила» бескрайние количества энергии и материи.
  • Неоднородность Вселенной тоже не совсем понятна. По всем канонам, она должна была стать однородной, но этой однородности не было даже в первичном газе.
  • Известные нам физические законы, помогающие описывать привычный для нас мир, в случае сингулярности не работают. Из этого следует, что возможно описание только тех событий, что случились после Большого взрыва, но не сам взрыв и не преддверие его.
  • Сам факт возникновения космологической сингулярности, – если продолжить обратно во времени решение, которое описывает динамику расширения Вселенной, – доказан С. Хокингом в 1967 году. Но он отметил, что сингулярность выбивается из сводов законов физики.

     Невозможно, чтобы плотность и температура в одно время имели бесконечные значения. Бесконечная плотность подразумевает, что мера хаоса (энтропия) устремляется к нулю, а это не стыкуется с бесконечной температурой.

    Космологическая сингулярность (и сам факт её существования) стала одной из главнейших проблем космологии.

    Это вытекает из того, что все имеющиеся сведения о случившемся после Большого взрыва не дают абсолютно никакой информации о тех явлениях, что предшествовали этому грандиозному событию. Но решить эту проблему учёный мир пытается беспрестанно, и попытки эти происходят в разных направлениях:

    • Допускается, что описать динамику поля, где нет данных особенностей, будет возможно при помощи квантовой гравитации, теория которой пока не построена;
    • Считается, что если учесть квантовые эффекты в полях негравитационных, можно нарушить условие энергодоминантности, а именно на него сделан упор у Хокинга;
    • Наличествуют иные теории гравитации, не апеллирующие сингулярностью. В них вещество, сжатое до предела, при помощи сил гравитации испытывает не притяжение, а отталкивание.

    Гравитационная сингулярность

    Если говорить сухим языком физических терминов, то это — точка, находящаяся в пространстве-времени, через которую нет возможности ровно проложить геодезическую линию. Зачастую гравитационная сингулярность делает бесконечными или неопределёнными величины, которые описывают гравитационное поле.

    К этим величинам относятся, например, плотность энергии или скалярная кривизна. Теория относительности подразумевает, что сингулярности должны возникать в процессе формирования чёрной дыры. Если они находятся под горизонтом событий, то наблюдать их нельзя.

    В случае же Большого взрыва имеет место голая сингулярность – её наблюдение вполне возможно, если, конечно, оказаться рядом. К сожалению, непосредственно увидеть её невозможно, поэтому она, исходя из уровня развития современной физики, является только теоретическим объектом.

    Когда будут разработаны положения квантовой гравитации, появится возможность описания пространства-времени вблизи этих объектов.

    Каждая чёрная дыра обладает двумя основными чертами – горизонтом событий и сингулярностью, которая и есть центр этой дыры. Здесь происходит искажение, а также разрыв пространства-времени. По сути, законы физики тут теряют логику. Существуют теории, что в таких точках вполне возможно осуществить переход в другие миры.

    Разработана математическая модель – «мост Эйнштейна-Розена», подтверждающая такой вариант. Это возможно сделать посредством скачка сквозь сингулярность. Именно здесь пересекаются слои Вселенной, образуя подобие подпространственного перехода. Он является соединением двух дыр – чёрной и белой.

    Это своеобразная машина времени, а сам факт перехода не вступает в противоречия с принципом причинности. Прыжки через сингулярность вращающейся чёрной дыры сделают реальными путешествия во времени в любых его направлениях. Поскольку чёрная дыра окружена горизонтом событий, то сингулярность увидеть в обнажённом состоянии нельзя.

    Но всё-таки создаются модели, с разной степенью реалистичности позволяющие это сделать.

    Если раскрутить чёрную дыру до определённой скорости, горизонт событий может отделиться. Однако тут есть некоторые трудности. Чтобы раскрутить чёрную дыру, нужно в неё вливать дополнительную массу, что не очень реально из-за наличия чёткого предела, сверх которого вращение дыры невозможно.

    Но обычно принимается положение, что масса добавляется в уже очень быстро вращающуюся дыру. А если предположить, что вращение только началось? Такой вариант позволяет раскрутить чёрную дыру до состояния, когда её сингулярность станет открытой.

    Вполне вероятно, что во Вселенной путешествуют чёрные дыры, щеголяющие голой сингулярностью.

    Сингулярность в математике

    Математическое понятие данной особенности – это некоторая точка, в которой для математической функции характерно стремление к бесконечности. Либо функция обладает другими нерегулярностями поведения (в частности, критическая точка).

    Технологическая сингулярность

    Это понятие относится в основном к области футурологии, учения, пытающегося спрогнозировать будущее. За основу в этом случае берутся некоторые имеющиеся тенденции в технологии, экономике, социальных явлениях, а потом производится их экстраполяция.

     Считается, что вскоре наступит момент, когда прогресс в науке и технике станет недоступен пониманию человеческого разума. Вероятно, это станет реальным после того, как появится возможность создания искусственного интеллекта и наладится выпуск машин, воспроизводящих самих себя.

    К такому же результату приведёт интеграция человека с вычислительными машинами или же резкое изменение функциональности мозга человека с применением биотехнологий. Это и станет технологической сингулярностью, которую некоторые учёные предрекают в скором будущем. В.

    Видж считает, что это случится уже в 2030 году, а Р. Курцвейл отодвигает революцию на год 2045-й.

    Сингулярность в биологии

    В биологии это понятие используется не часто. Обычно оно применяется в качестве некоторых обобщений в эволюционном процессе.

    Выводы и значение

    Если математическая, техническая и биологическая сингулярности имеют вполне осязаемые параметры, то с особенностями других вариантов дело обстоит сложнее. Трудно оперировать понятиями, которые нельзя «пощупать» и оценить. Математические расчёты – вещь надёжная, но только в том случае, если объекты исследований достаточно материальны. С сингулярностью всё иначе.

    Она не только не материальна, но ещё пока и не доказана. Поэтому и применение её, даже гипотетическое, вызывает вопросы. Если можно путешествовать сквозь неё, чтобы попасть в другие измерения, то как остаться целым, проходя сквозь гравитационные Сциллу и Харибду? Вероятно, у физиков со временем найдутся ответы на все вопросы.

    И мы обязательно узнаем их и наконец-то поймём, что же такое сингулярность.

    Ещё по теме:

    by HyperComments

    Что такое космологическая сингулярность

    Космологическая сингулярность – все о космосе

    Космологическая сингулярность – теоретическое построение некоего состояния, в котором находилась Вселенная в начальный момент Большого Взрыва. Особенность этого состояния в том, что оно характеризуется бесконечной плотностью и одновременно бесконечной температурой.

    Возникновение понятия

    Стивен Хокинг

    Космологическая сингулярность является частным случаем гравитационной сингулярности. Если мы привыкли рассматривать материю как некоторое гладкое и бескрайнее пространство (многообразие), то в области гравитационной сингулярности пространство-время искривляется. В 1915 — 1916 г.

    великий физик Альберт Эйнштейн опубликовал свою общую теорию относительности, согласно которой гравитационные эффекты существуют не как следствие работы каких-либо сил, возникающих между телами или в полях, а вследствие искажения самого пространства-времени.

    При помощи своих уравнений Эйнштейн смог описать связь кривизны пространства-времени и материи, которая находится в нем.

    Позже, в 1967-м году Стивен Хокинг использовал уравнения Эйнштейна для общей теории относительности, которые описывают динамику Вселенной, чтобы получить их решения для прошедшего времени. То есть  он определил состояние Вселенной в изначальный момент ее существования, и доказал, что таковой момент действительно есть.

    Гравитационная сингулярность

    Положение сингулярности в черной дыре

    Точно описать гравитационную сингулярность пока не удается по той причине, что многие известные величины в ее пределах устремляются к бесконечности либо становятся неопределенными. Например, плотность энергии выбранной системы отсчета этой области или скалярная кривизна.

    Благодаря трудам физиков-теоретиков мы имеем строгие доказательства того, что в сердцах черных дыр, а именно за горизонтом событий должна располагаться такая гравитационная сингулярность, иначе черная дыры просто не сформировалась бы.

    К сожалению, наблюдать что-либо находящееся за горизонтом событий невозможно в принципе, хотя есть предположения, что существуют черные дыры, сингулярность которых немного выходит за его пределы и может быть наблюдаема.

    Космологическая же сингулярность называется «голой», так как теоретически ее можно было бы увидеть.

    Свойства, парадоксы и следствия космологической сингулярности

    Основные характеристики сингулярности – одновременно бесконечные температура и плотность вещества. Подобное явление можно попытаться представить как сосредоточение бесконечно большой массы в бесконечно малом объеме.

    Однако согласно физическим расчетам эти две величины не могут одновременно стремиться к бесконечности.

    Как известно, температура тесно связана с энтропией — мерой хаоса, которая с увеличением плотности может лишь уменьшаться, как собственно и температура.

    Сингулярность в представлении художника

    Достоверно известно, что существует определенный момент во времени, в который из сингулярности зародилась Вселенная. Но никакие знания о том, что было до сингулярности, из расчетов или наблюдений мы получить не можем.

    Также не может быть найдена центральная точка, сердцевина из которой произошел Большой Взрыв. А самое главное, каким образом космологическая сингулярность породила немыслимые запасы материи и энергии нашей Вселенной.

    К сожалению, на сегодня разработанные физические конструкции не могут объяснить наличие такого явления, как сингулярность, так как в ее области все существующие законы физики не применимы. Как сказал известный физик современности Митио Каку: «мы называем сингулярностью то, что не можем понять».

    by HyperComments

    Adblock
    detector