Парадокс ольберса – все о космосе

Парадокс Ольберса: почему на ночном небе так мало звезд

Парадокс ольберса – все о космосе

Парадокс ольберса – все о космосе

Вселенная бесконечна, и в ней нет числа звездам. В центре леса, который меньше Вселенной, и деревьев не так много как звезд, нельзя увидеть просветы — поле зрения закрывают стволы и листья. 

Почему же тогда ночное небо не переполнено звездами? В этом и заключается парадокс Ольберса, или же фотометрический парадокс. Сегодня мы найдем ему разгадку.

Столько звезд на маленьком квадратике неба видит мощный телескоп. Соль в том, что их должно быть еще больше.

Наука vs. Логика

Загадка того, почему на ночном небе так мало звезд, мучила астрономов даже в научно-зрелом XIX веке. В телескопы, что правда, ученые видели куда больше светил — но меньше, чем горит в бескрайней Вселенной. Под сводами ученых лбов, логика твердила, что ночное небо должно выглядеть примерно так, как на анимации рядом.

Решение парадокса оказалось еще проще, чем формулировка.

Звезды-невидимки

Начнем с того, что звездочеты прошлого тысячелетия не так уже и ошибались. Фото ниже сделал орбитальный телескоп имени Хаббла (невероятно крутой аппарат). Изображен тут клочок размером 1/13,000,000 всей небесной сферы.

Небо по Парадоксу Ольберса

Все эти цветные звездочки — галактики, которые невидимы глазу. Для того чтобы сделать этот снимок, телескопу пришлось отправиться в космос, использовать сверхчувствительные матрицы и выдерживать кадр больше 11 суток! Такие технологии появились только в конце прошлого века.

Hubble Ultra Deep Field

Если бы человек видел все то же, что орбитальный телескоп, ночное небо было бы столь же ярким, как центр рукава нашего Млечного Пути! Однако все равно есть черные просветы, которые парадокс Ольберса отрицает. Разгадка этих пустот кроется в той же причине, по которой галактики скрыты от невооруженного глаза.

Вселенная расширяется слишком быстро

Мы уже разобрали вместе, как и почему мир вокруг нас раздувается. Вкратце, свет от далеких галактик преодолевает большее расстояние к нам, чем оно было в тот момент, когда он покинул дом. Это создает эффект красного смещения — частота и энергия лучей далеких звезд уменьшается.

Что из этого следует? Есть такие далекие звезды, лучи от которых угаснут еще до того, как долетят к Земле. Поэтому в черных пропастях космоса таки есть свет — просто мы его никогда не увидим.

Красное смещение

К слову, расстояние является главным источником фотометрического парадокса Об этом ниже.

Чтобы достичь Земли, свету требуется время. 149 600 000 километров от Солнца к нам он проходит за 8,3 минуты, а 81360544648396 километров от звезды Сириус — за 8,6 года. Чем больше расстояние — тем дольше свету идти, тут все ясно.

Возраст нашей Вселенной составляет около 13,8 миллиарда лет. Но размеры космоса ведь бесконечны! Самые мощные телескопы смогли засечь свет с расстояния-времени в 12-13 миллиардов лет. А значит, прорва галактик остается невидимой — они настолько далеко, что излучение физически не успело долететь даже в виде неуловимых нейтрино!

Горизонт событий имеет непосредственное отношение к тому, почему черные дыры — черные. 

Так как Вселенная расширяется, то свету приходится преодолевать еще большее расстояние. И когда-то на задворках мира расширение сравняется со скоростью света — это установит так называемый горизонт событий. Он будет пододвигаться к нам все теснее, пока перестанут быть видны даже самые ближние звезды.

Это произойдет только если расширение не прекратится, и то через многие миллиарды лет. Недавно мы писали о масштабных космических катастрофах — даже их застать легче, чем дождаться горизонта событий у порога дома.

Напоследок

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций – важный фактор

Получается, что загадка Ольберса и не парадокс вовсе — просто законы физики не позволяют сразу всем звездам слепить нам глаза. Однако ученых этим не остановить, и они продолжают открывать новые звезды.опубликовано econet.ru 

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

https://www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos 

Подпишитесь – https://www..com/econet.ru/

Это

20 захватывающих научных сериалов обо всём

10 псевдо-открытий, которые потрясли научный мир

P.S. И помните, всего лишь изменяя свое потребление – мы вместе изменяем мир! © econet

Парадокс Ольберса

Парадокс ольберса – все о космосе

Вселенная бесконечна, и в ней нет числа звездам. В центре леса, который меньше Вселенной, и деревьев не так много как звезд, нельзя увидеть просветы — поле зрения закрывают стволы и листья. Почему же тогда ночное небо не переполнено звездами? В этом и заключается парадокс Ольберса, или же фотометрический парадокс. Сегодня мы найдем ему разгадку.

Наука vs. Логика
Загадка того, почему на ночном небе так мало звезд, мучила астрономов даже в научно-зрелом XIX веке. В телескопы, что правда, ученые видели куда больше светил — но меньше, чем горит в бескрайней Вселенной. Под сводами ученых лбов, логика твердила, что ночное небо должно выглядеть примерно так, как на анимации рядом.

Решение парадокса оказалось еще проще, чем формулировка.
Звезды-невидимки.

Начнем с того, что звездочеты прошлого тысячелетия не так уже и ошибались. На 2-м фото ниже снимок, которое сделал орбитальный телескоп имени Хаббла. Изображен тут клочок размером 1/13,000,000 всей небесной сферы.

Все эти цветные звездочки — галактики, которые невидимы глазу. Для того чтобы сделать этот снимок, телескопу пришлось отправиться в космос, использовать сверхчувствительные матрицы и выдерживать кадр больше 11 суток! Такие технологии появились только в конце прошлого века.

Если бы человек видел все то же, что орбитальный телескоп, ночное небо было бы столь же ярким, как центр рукава нашего Млечного Пути! Однако все равно есть черные просветы, которые парадокс Ольберса отрицает. Разгадка этих пустот кроется в той же причине, по которой галактики скрыты от невооруженного глаза.

Вселенная расширяется слишком быстро
Мы уже разобрали вместе, как и почему мир вокруг нас раздувается. Вкратце, свет от далеких галактик преодолевает большее расстояние к нам, чем оно было в тот момент, когда он покинул дом. Это создает эффект красного смещения — частота и энергия лучей далеких звезд уменьшается.

Что из этого следует? Есть такие далекие звезды, лучи от которых угаснут еще до того, как долетят к Земле. Поэтому в черных пропастях космоса таки есть свет — просто мы его никогда не увидим.

К слову, расстояние является главным источником фотометрического парадокса Об этом ниже.

Горизонт событий не резиновый
Чтобы достичь Земли, свету требуется время. 149 600 000 километров от Солнца к нам он проходит за 8,3 минуты, а 81360544648396 километров от звезды Сириус — за 8,6 года. Чем больше расстояние — тем дольше свету идти, тут все ясно.

Возраст нашей Вселенной составляет около 13,8 миллиарда лет. Самые мощные телескопы смогли засечь свет с расстояния-времени в 12-13 миллиардов лет. А значит, прорва галактик остается невидимой — они настолько далеко, что излучение физически не успело долететь даже в виде неуловимых нейтрино!

Так как Вселенная расширяется, то свету приходится преодолевать еще большее расстояние. И когда-то на задворках мира расширение сравняется со скоростью света — это установит так называемый горизонт событий. Он будет пододвигаться к нам все теснее, пока перестанут быть видны даже самые ближние звезды.

Это произойдет только если расширение не прекратится, и то через многие миллиарды лет. Недавно мы писали о масштабных космических катастрофах — даже их застать легче, чем дождаться горизонта событий у порога дома.

Напоследок
Получается, что загадка Ольберса и не парадокс вовсе — просто законы физики не позволяют сразу всем звездам слепить нам глаза. Однако ученых этим не остановить, и они продолжают открывать новые звезды.

spacegid

Фотометрический парадокс или парадокс Ольберса

Парадокс ольберса – все о космосе

Знания нельзя купить, здесь их дают бесплатно!

«Класс!ная физика» – на Youtube

А почему же небо ночью темное, хотя звезд во Вселенной «не меряно»? Ну, хоть для сравнения, представьте себя в лесу, перед Вами «стена» деревьев, между ними и просвета-то не увидишь …

Фотометрический парадокс Ольберса – классический дорелятивистский космологический парадокс, сформулированный в 1823 немецким астрономом Генрихом Вильгельмом Ольберсом .

Сущность парадокса: «Почему ночью небо темное?»

Или более подробно: «B бесконечной Вселенной, все пространство которой равномерно заполнено звёздами, всякий луч зрения должен оканчиваться на звезде.

Поверхностная яркость звезд не зависит от расстояния, а поскольку в любой точке небосвода должна находиться какая-нибудь звезда, всё небо должно быть таким же ярким, как и поверхность Солнца (Солнце является типичной звездой, и поэтому поверхностная яркость практически любой звезды в среднем должна быть равна поверхностной яркости Солнца).

В свое время эту проблему обсуждали и английский математик Томас Диггес (1546–1595), и Иоганн Кеплер (1571–1630), и Эдмонд Галлей (1656–1742), и швейцарский астроном Жан Шезо ( 1744г).

Для объяснения парадокса Ольберс предположил, что в межзвездном пространстве имеется рассеянное вещество, которое поглощает свет далеких звезд.

Хотя спустя столетие межзвездное поглощение света действительно было обнаружено, оно не смогло разрешить фотометрический парадокс, т.к. сами пылинки в безграничной и вечной Вселенной, однородно заполненной звездами, нагрелись бы до температуры звездной поверхности и светились бы как звезды.

Позже немецкий астроном Х.Зелигер ( 1849–1924) сформулировал другой космологический парадокс – гравитационный, в котором, согласно ньютоновской теории тяготения, в бесконечной Вселенной, однородно заполненной веществом, сила тяготения не имеет определенной конечной величины.

Так можно было бы проиллюстрировать фотометрический парадокс в однородной и изотропной статической Вселенной:

В рамках классической физики оба парадокса нашли разрешение в модели иерархического строения Вселенной, разработанной астрономом Карлом Вильгельмом Шарлье (1862–1934) из Швеции.

Согласно этой теории, Вселенная устроена подобно матрёшке и представляет собой бесконечную совокупность входящих друг в друга систем все возрастающего порядка сложности: отдельные звезды образуют галактику, совокупность галактик образует Метагалактику и т.д. до бесконечности.

Шарлье пришел к выводу о том, что в бесконечной Вселенной фотометрический и гравитационный парадоксы устраняются, если расстояния между равноправными системами достаточно велики по сравнению с их размерами, что приводит к непрерывному уменьшению средней плотности космической материи по мере перехода к системам более высокого порядка.

Однако Эд. Хаббл (1889–1953) и другие астрономы доказали, что в больших масштабах Вселенная однородна и изотропна. С другой стороны, открытое Хабблом расширение Вселенной показало, что чем дальше от нас галактики и их звезды, тем быстрее они от нас удаляются.

Тогда некоторые исследователи решили, что один лишь эффект красного смещения может объяснить темноту ночного неба, поскольку свет, испущенный далекими звездами, достигая Земли, оказывается за пределом оптического диапазона спектра.

Подробное математическое рассмотрение этого решения было дано Уильямом Томсоном (лордом Кельвином) в 1901 г. За время, прошедшее с начала расширения нашего мира (около 15 млрд. лет), до нас дошел свет лишь от ограниченного числа галактик (порядка 10 млрд.); этого слишком мало, чтобы сделать ночное небо светлым.

Окончательное объяснение стало возможным после признания того, что Вселенная расширяется. Фотометрический и гравитационный парадоксы были разрешены лишь в релятивистской теории эволюционирующей Вселенной, разработанной на основе Общей Теории Относительности Альберта Эйнштейна.

Следующая страница «Аэродинамический парадокс спутника»
Назад в раздел «Физические парадоксы»

Устали? – Отдыхаем!

Вверх

Читать

Парадокс ольберса – все о космосе

Переводчики М. Кузнецова, Н. Нарциссова (глоссарий)

Научный редактор Д. Горбунов, д-р физ. – мат. наук

Руководитель проекта И. Серёгина

Корректоры М. Савина, М. Миловидова

Компьютерная верстка А. Фоминов

Дизайнер обложки Ю. Буга

© Michio Kaku, 2005

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2017

Все права защищены. Произведение предназначено исключительно для частного использования.

Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав.

За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

* * *

Эта книга посвящается моей любимой жене Сидзуэ

Космология изучает Вселенную как единое целое, в том числе ее рождение и, возможно, ее конечную судьбу. Неудивительно, что эта наука претерпела множество трансформаций в ходе своего медленного и нелегкого развития – развития, которое часто омрачалось религиозными догмами и предрассудками.

Первый переворот в истории космологии был связан с изобретением телескопа в XVII в. При его помощи Галилео Галилей, основываясь на работах выдающихся астрономов Николая Коперника и Иоганна Кеплера, впервые приблизил к нам величие небес и сделал их предметом серьезных научных исследований.

Кульминацией развития космологии на раннем этапе стали работы Исаака Ньютона, который сформулировал фундаментальные законы, управляющие движением небесных тел.

Эти законы больше не рассматривались как некое волшебство или мистика – стало ясно, что на все тела действуют силы, которые можно измерить и подсчитать.

Начало второго переворота в истории космологии было положено изобретением больших телескопов, таких как телескоп в Обсерватории Маунт-Вилсон с огромным рефлектором диаметром 250 см.

В 1920-е годы при помощи этого гигантского телескопа астроном Эдвин Хаббл опроверг вековые догмы, гласившие, что Вселенная неизменна и вечна: он показал, что галактики удаляются от Земли с невероятными скоростями, то есть Вселенная расширяется.

Это подтвердило результаты общей теории относительности Эйнштейна, в которой архитектура пространства-времени представала отнюдь не плоской и линейной, а динамичной и искривленной.

Это дало возможность выдвинуть первое правдоподобное объяснение происхождения Вселенной, которое заключалось в том, что Вселенная возникла в результате катастрофического взрыва, получившего название Большой взрыв. Он разбросал звезды и галактики в разные стороны. Новаторский труд Георгия Гамова и его коллег по теории Большого взрыва, а также работа Фреда Хойла, посвященная происхождению химических элементов, способствовали выстраиванию общей картины эволюции Вселенной.

В настоящее время происходит третий переворот.

Он начался около пяти лет назад и был вызван появлением целого арсенала новых высокотехнологичных приборов, таких как космические спутники, лазеры, детекторы гравитационных волн, рентгеновские телескопы и высокоскоростные суперкомпьютеры. На данный момент мы располагаем самыми надежными сведениями о природе Вселенной, включающими ее возраст, состав и, возможно, даже ее будущее и окончательную гибель.

Сейчас астрономы понимают, что Вселенная стремительно расширяется, бесконечно ускоряя это движение и постепенно становясь все холоднее и холоднее. Если этот процесс будет продолжаться, то мы столкнемся с перспективой Большого охлаждения, когда Вселенная погрузится во тьму и холод, а вся разумная жизнь погибнет.

Эта книга посвящена именно третьему перевороту. Она отличается от моих предыдущих книг по физике «За пределами научной мысли Эйнштейна» (Beyond Einstein) и «Гиперпространство» (Hyperspace), которые помогли представить широкой публике новые концепции дополнительных измерений и теорию суперструн.

В книге «Параллельные миры» я уделяю основное внимание не проблеме пространства-времени, а революционным изменениям в космологии, произошедшим за последние несколько лет. В разработке этой темы я опираюсь на новые данные, полученные учеными всего мира из самых отдаленных уголков космоса, а также на новейшие открытия теоретической физики.

Мне очень хотелось, чтобы книгу легко было читать и понимать без предварительного введения в физику или космологию.

В первой части я акцентирую внимание на изучении Вселенной, вкратце освещая достижения ранних этапов космологии, кульминационной точкой которых стало появление теории инфляционного расширения Вселенной. Эта теория представляет на настоящий момент самую передовую формулировку теории Большого взрыва.

Часть вторая посвящена исключительно зарождающейся теории Мультивселенной – мира, состоящего из множества вселенных, где наша является лишь одной из многих; кроме того, в ней рассматривается возможность существования порталов-червоточин, пространственных и временных колец и возможная связь между ними через дополнительные измерения. Теория суперструн и М-теория стали первыми крупными достижениями после основополагающей теории Эйнштейна. В этих теориях содержатся дальнейшие доказательства того, что наша Вселенная – лишь одна из многих. И наконец, в третьей части рассказывается о Большом охлаждении и о том, каким представляют ученые конец нашей Вселенной. Я также веду серьезный, хоть и гипотетический разговор о том, каким образом в отдаленном будущем, триллионы лет спустя, высокоразвитая цивилизация могла бы использовать законы физики, чтобы покинуть нашу Вселенную и начать процесс возрождения в другой, более гостеприимной вселенной или вернуться назад – в то время, когда Вселенная была теплее.

Поток новых данных, которые мы получаем в настоящий момент, современная техника, такая как космические спутники, способные сканировать небо, новые детекторы гравитационных волн, а также близящееся завершение строительства новых ускорителей частиц размером с город, придают физикам уверенность в том, что мы вступаем в золотой век космологии. Словом, это благодатное время для физиков и всех, кто пускается на поиски знаний о происхождении и судьбе нашей Вселенной.

Поэт лишь желает подняться головой к небесам. Логик же пытается затолкать небеса к себе в голову. Его-то голова и раскалывается.

Г. К. Честертон

В детстве я испытывал внутренний дискомфорт, связанный с тем, что я и мои родители исповедовали разные религии. Родители были воспитаны в буддийских традициях. Я же каждую неделю ходил в воскресную школу, где с увлечением слушал библейские сказания о китах, ковчегах, соляных столпах, ребрах и яблоках.

Я был очарован этими притчами Ветхого Завета, в воскресной школе мне нравились именно они. Притчи о великих потопах, пылающих кустах и расступающихся пучинах увлекали меня гораздо сильнее буддийских песнопений и медитаций.

По сути, эти древние сказания о героизме и вселенской трагедии ярко иллюстрировали глубокие моральные принципы; уроки этики, вынесенные из них, остались со мной на всю жизнь.

Уроки. Урок 31. Космологические парадоксы Вселенной | Астрономия в школе

Парадокс ольберса – все о космосе

Космологические парадоксы — затруднения (противоречия), возникающие при распространении законов физики на Вселенную в целом или достаточно большие её области.

Классическая картина мира XIX века оказалась достаточно уязвимой в области космологии Вселенной, благодаря необходимости объяснения 3 парадоксов: фотометрического, термодинамического и гравитационного.

Вам предлагается объяснить эти парадоксы с точки зрения современной науки.

Фотометрический парадокс (Ж. Шезо, 1744г; Г. Ольберс, 1823г) сводился к объяснению вопроса “Почему ночью темно?”.
   Если Вселенная бесконечна, то звезд в ней бесчисленно много.

При сравнительно равномерном распределении звезд в пространстве число звезд, находящихся на данном расстоянии, возрастает пропорционально квадрату расстояния до них.

Поскольку блеск звезды ослабевает пропорционально квадрату расстояния до нее, то ослабление общего света звезд из-за их удаленности должно в точности компенсироваться возрастанием числа звезд, и вся небесная сфера должна равномерно и ярко светится.

Это противоречие с тем, что наблюдается в действительности, и называется фотометрическим парадоксом.    Впервые этот парадокс сформулировал во всей его полноте швейцарский астроном Жан-Филипп Луи де Шезо (1718—1751) в 1744г, хотя аналогичные мысли высказывали ранее и другие ученые, в частности, Иоганн Кеплер, Отто фон Герике и Эдмунд Галлей.

Иногда фотометрический парадокс называется парадоксом Ольберса, в честь астронома, который привлек к нему внимание в XIX веке.

     Правильное объяснение фотометрического парадокса предложил знаменитый американский писатель Эдгар По в космологической поэме «Эврика» (1848г); подробное математическое рассмотрение этого решения было дано Уильямом Томсоном (лордом Кельвином) в 1901г. Оно основано на конечности возраста Вселенной.

Поскольку (по современным данным) более 13 млрд. лет назад во Вселенной не было галактик и квазаров, самые далекие звезды, которые мы можем наблюдать, расположены на расстояниях в 13 млрд. св. лет. Это устраняет основную предпосылку фотометрического парадокса — то, что звезды расположены на любых, сколь угодно больших расстояниях от нас. Вселенная, наблюдаемая на больших расстояниях, настолько молода, что звезды еще не успели в ней образоваться. Заметим, что это нисколько не противоречит космологическому принципу, из которого следует безграничность Вселенной: ограничена не Вселенная, а только та часть ее, где успели за время прихода к нам света родиться первые звезды.

    Некоторый (существенно меньший) вклад в уменьшение яркости ночного неба вносит и красное смещение галактик. Действительно, далекие галактики имеют в (1+z) большую длину волны излучения, чем галактики на близких расстояниях.

Но длина волны связана с энергией света по формуле ε=hc/λ. Поэтому энергия фотонов, принимаемых нами от дальних галактик, в (1+z) раз меньше.

Далее, если из галактики с красным смещением z вылетают два фотона с интервалом времени δt, то интервал между принятием этих двух фотонов на Земле будет в еще в (1+z) раз больше, стало быть, интенсивность принятого света во столько же раз меньше.

В итоге мы получаем, что суммарная энергия, поступающая к нам от далеких галактик, в (1+z)² раз меньше, чем если бы эта галактика не удалялась от нас вследствие космологического расширения.

Термодинамический парадокс (Клаузиус, 1850 г.), связан с противоречием второго начала термодинамики и концепции вечности Вселенной.

Согласно необратимости тепловых процессов, все тела во Вселенной стремятся к тепловому равновесию.

Если Вселенная существует бесконечно долго, то почему же тепловое равновесие в природе до сих пор не наступило, а тепловые процессы продолжаются до сих пор?

Гравитационный парадокс

Мысленно выберем сферу радиуса R0 так, чтобы ячейки неоднородности в распределении вещества внутри сферы были несущественны и средняя плотность была равна средней плотности Вселенной . Пусть на поверхности сферы находится тело массой m, например, Галактика.

Согласно теореме Гаусса о центрально-симметричном поле, сила тяготения со стороны вещества массой М, заключенного внутри сферы, будет действовать на тело так, как если бы все вещество было сосредоточено в одной точке, расположенной в центре сферы.

При этом остальное вещество Вселенной никакого вклада в эту силу не вносит.

 Выразим массу через среднюю плотность :. Пусть Тогда – ускорение свободного падения тела к центру сферы зависит только от радиуса сферы R0. Поскольку радиус сферы и положение центра сферы выбраны произвольно, возникает неопределенность в действии силы на пробную массу m и направление ее движения.

(парадокс Неймана — Зелигера, название по имени немецких учёных К. Неймана и Х.

Зелигера, 1895г) основан на положениях бесконечности, однородности и изотропности Вселенной, имеет менее очевидный характер и состоит в том, что закон всемирного тяготения Ньютона не даёт какого-либо разумного ответа на вопрос о гравитационном поле, создаваемом бесконечной системой масс (если только не делать очень специальных предположений о характере пространственного распределения этих масс). Для космологических масштабов ответ даёт теория А. Эйнштейна, в которой закон всемирного тяготения уточняется для случая очень сильных гравитационных полей.

Парадокс Ольберса

Парадокс ольберса – все о космосе

Почему ночное небо кажется нам черным?

Самый большой парадокс, с точки зрения истории науки, здесь состоит, пожалуй, в том, почему именно фамилия немецкого астронома Вильгельма Ольберса оказалась закрепленной в названии этого загадочного явления. На самом деле, это один из редких случаев, когда в названии феномена или закона фигурирует отнюдь не имя того, кто его впервые сформулировал.

Историки науки скажут вам, что впервые проблема была упомянута в 1720 году английским астрономом Эдмундом Галлеем (Edmund Halley, 1656–1742), затем, независимо от него, в 1742 году ее сформулировал швейцарец Жан Филипп де Шезо (Jean Philippe de Chéseaux, 1781–1851) — и дал на нее ответ, в принципе не отличающийся от предложенного в 1823 году Ольберсом.

Так называемый фотометрический парадокс Ольберса формулируется достаточно просто: если Вселенная бесконечна, однородна и стационарна (а в XVIII-XIX веках астрономы в этом не сомневались), то в небе — в каком направлении ни посмотри — рано или поздно окажется звезда. То есть, всё небо должно быть сплошным образом заполнено яркими светящимися точками звезд. То есть, в ночи небо должно ярко светиться. А мы почему-то наблюдаем сплошное черное небо лишь с отдельными звездами.

Ольберс объяснил это явление поглощением света в межзвездном пространстве в силу того, что оно частично заполнено поглощающим свет веществом, например, межзвездными пылевыми облаками. Однако, с появлением первого начала термодинамики, это объяснение стало отнюдь не бесспорным, поскольку, поглощая свет, межзвездное вещество неизбежно разогрелось бы и само начало испускать свет.

Окончательно парадокс Ольберса удалось разрешить лишь в ХХ столетии. Теперь мы знаем (см. Закон Хаббла), что Вселенная имеет конечный возраст. Если, как предполагается, Большой взрыв случился 15 миллиардов лет тому назад, астрономы способны наблюдать лишь светящиеся объекты, удаленные от нас на расстояние не более 15 млрд. световых лет.

Поэтому число звезд в ночном небе конечно, хотя и огромно, и поэтому не по каждому направлению наблюдения мы видим звезду. Кроме того, мы знаем, что звезды не вечны — со временем они умирают и перестают излучать свет (см. Эволюция звезд).

Поэтому, даже если в направлении наблюдения имеется звезда, это вовсе не означает, что она обязана светиться, поскольку это может оказаться древняя звезда, ядерное горючее внутри которой давно израсходовано.

Любого из приведенных выше объяснений достаточно для того, чтобы считать вопрос с парадоксом Ольберса исчерпанным, хотя во времена самого Ольберса и его предшественников явления, объясняющие его, естественно, известны не были (кроме гипотезы о поглощении света в межзвездном пространстве).

Биографии: Генрих Вильгельм Маттеус ОЛЬБЕРС

Почему космос черный?

Парадокс ольберса – все о космосе

Черный космос

Днем мы видим над землей голубое небо, потому что солнечный свет отражается молекулами воздуха, как миллионами маленьких зеркал. А вот на Луне, где нет атмосферы, небо черное и звезды видны, даже когда светит Солнце. То же самое относится к космическому пространству. Это пустота, в которой слишком мало молекул, чтобы вернуть наблюдателю отраженный солнечный свет.

Поэтому, даже если ярко светит раскаленное Солнце, космическое пространство все равно выглядит как устрашающе – черная бездна.

Почему космос черный несмотря на свет звезд

Таинственная чернота космоса — истинная загадка, о которой ученые спорили многие сотни лет.

Почему звезды нашей Вселенной все вместе не светят ровным слепящим светом? Почему небо черное именно ночью? Астроном Томас Диггс заинтересовался этим вопросом в 16 веке.

Диггс был убежден, что Вселенная не имеет ни конца, ни края и бесконечно простирается во всех направлениях, что Вселенная существует вечно и пребудет вечно и что во Вселенной неисчислимое количество звезд.

Парадокс Ольберса

Если небо переполнено бесконечным числом звезд, размышлял он, то звезды должны быть везде, куда бы мы ни посмотрели. Покрытое удаленными солнцами небо ослепляло бы нас ярким светом. Но этого не происходит.

Диггс так и не решил эту головоломку. Немецкий астроном 19 века Вильгельм Ольберс тоже многие годы задавался этим вопросом. И проблема, отчего темным выглядит ночное небо, получила название «парадокс Ольберса».

Ольберс предложил несколько вариантов решения задачи, но потом отказался от них и решил, что причина в рассеянной в воздухе пыли. Он думал, что мы не можем видеть свет удаленных звезд, так как его поглощает пыль? Этот ответ означал, что существует бесконечное число звезд, закрытых пылевой вуалью.

Удаленность звезд

Однако уже после смерти Ольберса было рассчитано, что звезды излучаемой ими энергией способны разогреть любую пыль так, что она сама начнет светиться. Тогда ночное небо, казалось бы, светлым от светящейся пыли. Все вернулось на круги своя — да, парадокс.

 Ученые разрабатывали другие теоретические объяснения. Например, удаленные звезды светят слабее, чем ближе расположенные, поэтому свет от далеких звезд или очень слаб или просто не виден.

Однако это объяснение неудовлетворительно, потому что если звезд бесчисленное множество, то света все – таки должно хватить. Небо все равно должно быть светлым.

Количество звезд

Однако каждый раз ночью небо упрямо темнеет. Значит, теория плоха. Но чем? Диггс, Ольберс и другие допускали, что в бесконечно большой Вселенной находится бесчисленное множество звезд. К сожалению, они ошибались.

 Астроном Эдвард Гаррисон из Массачусетского университета в Амхерсте написал книгу: «Ночная тьма: загадка Вселенной». Он утверждает, что количество звезд явно недостаточно для того, чтобы небо ночью было светлым.

Ночное небо не освещено, потому что звезды так же, как и Вселенная, не продолжаются до бесконечности.

Интересный факт: небосвод Луны черен даже днем, потому что на Луне нет атмосферы, которая отражает и рассеивает солнечный свет.

С помощью самых мощных телескопов мы уже в состоянии разглядеть то место, где «кончаются» звезды. Свету необходимо миллионы лет, чтобы добраться до нас от дальних звезд. Отсюда ясно, что когда мы смотрим в небо, мы заглядываем в далекое прошлое. Мощнейшие телескопы позволяют увидеть свет, который начал свой путь к нам около 10 миллиардов лет назад.

Возраст нашей Вселенной около 15 миллиардов лет. Чем мощнее становятся телескопы, тем в более далекое прошлое можем мы заглянуть. Знаменитый американский автор фантастических стихов и рассказов Эдгар Аллан По заинтересовался чернотой ночного неба.

В 1848 году он опубликовал философскую поэму в прозе «Эврика». Он писал, что в черноте космоса мы видим ничто, которое существует, прежде чем стать звездой. Гаррисон считает, что в основе рассуждения По, лежит верная идея.

Сквозь черные провалы между звездами мы всматриваемся в начало Вселенной.

12 невероятных парадоксов

Парадокс ольберса – все о космосе

Парадоксы существовали со времен древних греков. При помощи логики можно быстро найти фатальный недостаток в парадоксе, который и показывает, почему, казалось бы невозможное, возможно или что весь парадокс просто построен на недостатках мышления.

А вы сможете понять, в чем недостаток каждого из ниже перечисленных парадоксов?

12. Парадокс Ольберса

В астрофизике и физической космологии парадокс Ольберса – это аргумент, говорящий о том, что темнота ночного неба конфликтует с предположением о бесконечной и вечной статической Вселенной.

Это одно из свидетельств нестатической Вселенной, такое как текущая модель Большого взрыва.

Об этом аргументе часто говорят как о “темном парадоксе ночного неба”, который гласит, что под любым углом зрения с земли линия видимости закончится, достигнув звезды.

Чтобы понять это, мы сравним парадокс с нахождением человека в лесу среди белых деревьев. Если с любой точки зрения линия видимости заканчивается на верхушках деревьев, человек разве продолжает видеть только белый цвет? Это противоречит темноте ночного неба и заставляет многих людей задаться вопросом, почему мы не видим только свет от звезд в ночном небе.

11. Парадокс всемогущества

Парадокс состоит в том, что если существо может выполнять какие-либо действия, то оно может ограничить свою способность выполнять их, следовательно, оно не может выполнять все действия, но, с другой стороны, если оно не может ограничивать свои действия, то это что-то, что оно не может сделать.

Это, судя по всему, подразумевает, что способность всемогущего существа ограничивать себя обязательно означает, что оно действительно ограничивает себя. Этот парадокс часто формулируется в терминологии авраамических религий, хотя это и не является обязательным требованием.

Одна из версий парадокса всемогущества заключается в так называемом парадоксе о камне: может ли всемогущее существо создать настолько тяжелый камень, что даже оно будет не в состоянии поднять его? Если это так, то существо перестает быть всемогущим, а если нет, то существо не было всемогущим с самого начала.

Ответ на парадокс заключается в следующем: наличие слабости, такой как невозможность поднять тяжелый камень, не попадает под категорию всемогущества, хотя определение всемогущества подразумевает отсутствие слабостей.

10. Парадокс Сорита

Парадокс состоит в следующем: рассмотрим кучу песка, из которого постепенно удаляются песчинки. Можно построить рассуждение, используя утверждения: — 1000000 песчинок – это куча песка

— куча песка минус одна песчинка – это по-прежнему куча песка.

Если без остановки продолжать второе действие, то, в конечном счете, это приведет к тому, что куча будет состоять из одной песчинки. На первый взгляд, есть несколько способов избежать этого заключения.

Можно возразить первой предпосылке, сказав, что миллион песчинок – это не куча.

Но вместо 1000000 может быть сколь угодно другое большое число, а второе утверждение будет верным при любом числе с любым количеством нулей.

Таким образом, ответ должен прямо отрицать существование таких вещей, как куча. Кроме того, кто-то может возразить второй предпосылке, заявив, что она верна не для всех “коллекций зерна” и что удаление одного зерна или песчинки все еще оставляет кучу кучей. Или же может заявить о том, что куча песка может состоять из одной песчинки.

9. Парадокс интересных чисел

Утверждение: не такого понятия, как неинтересное натуральное число.

Доказательство от противного: предположим, что у вас есть непустое множество натуральных чисел, которые неинтересны. Благодаря свойствам натуральных чисел, в перечне неинтересных чисел обязательно будет наименьшее число.

Будучи наименьшим числом множества его можно было бы определить как интересное в этом наборе неинтересных чисел.

Но так как изначально все числа множества были определены как неинтересные, то мы пришли к противоречию, так как наименьшее число не может быть одновременно и интересным, и неинтересным.

Поэтому множества неинтересных чисел должны быть пустыми, доказывая, что не существует такого понятия, как неинтересные числа.

8. Парадокс летящей стрелы

Данный парадокс говорит о том, что для того, чтобы произошло движение, объект должен изменить позицию, которую он занимает. В пример приводится движение стрелы. В любой момент времени летящая стрела остается неподвижной, потому как она покоится, а так как она покоится в любой момент времени, значит, она неподвижна всегда.

То есть данный парадокс, выдвинутый Зеноном еще в 6 веке, говорит об отсутствии движения как таковом, основываясь на том, что двигающееся тело должно дойти до половины, прежде чем завершить движение. Но так как оно в каждый момент времени неподвижно, оно не может дойти до половины. Этот парадокс также известен как парадокс Флетчера.

Стоит отметить, что если предыдущие парадоксы говорили о пространстве, то следующий парадокс – о делении времени не на сегменты, а на точки.

7. Парадокс Ахиллеса и черепахи

В данном парадоксе Ахиллес бежит за черепахой, предварительно дав ей фору в 30 метров. Если предположить, что каждый из бегунов начал бежать с определенной постоянной скоростью (один очень быстро, второй очень медленно), то через некоторое время Ахиллес, пробежав 30 метров, достигнет той точки, от которой двинулась черепаха. За это время черепаха “пробежит” гораздо меньше, скажем, 1 метр.

Затем Ахиллесу потребуется еще какое-то время, чтобы преодолеть это расстояние, за которое черепаха продвинется еще дальше. Достигнув третьей точки, в которой побывала черепаха, Ахиллес продвинется дальше, но все равно не нагонит ее. Таким образом, всякий раз, когда Ахиллес будет достигать черепаху, она все равно будет впереди.

Таким образом, поскольку существует бесконечное количество точек, которых Ахиллес должен достигнуть, и в которых черепаха уже побывала, он никогда не сможет догнать черепаху. Конечно, логика говорит нам о том, что Ахиллес может догнать черепаху, потому это и является парадоксом.

Проблема этого парадокса заключается в том, что в физической реальности невозможно бесконечно пересекать поперечно точки – как вы можете попасть из одной точки бесконечности в другую, не пересекая при этом бесконечность точек? Вы не можете, то есть, это невозможно.

Но в математике это не так. Этот парадокс показывает нам, как математика может что-то доказать, но в действительности это не работает. Таким образом, проблема данного парадокса в том, что происходит применение математических правил для нематематических ситуаций, что и делает его неработающим.

6. Парадокс Буриданова осла

Это образное описание человеческой нерешительности. Это относится к парадоксальной ситуации, когда осел, находясь между двумя абсолютно одинаковыми по размеру и качеству стогами сена, будет голодать до смерти, поскольку так и не сможет принять рациональное решение и начать есть.

Парадокс назван в честь французского философа 14 века Жана Буридана (Jean Buridan), однако, он не был автором парадокса. Он был известен еще со времен Аристотеля, который в одном из своих трудов рассказывает о человеке, который был голоден и хотел пить, но так как оба чувства были одинаково сильны, а человек находился между едой и питьем, он так и не смог сделать выбора.

Буридан, в свою очередь, никогда не говорил о данной проблеме, но затрагивал вопросы о моральном детерминизме, который подразумевал, что человек, столкнувшись с проблемой выбора, безусловно, должен выбирать в сторону большего добра, но Буридан допустил возможность замедления выбора с целью оценки всех возможных преимуществ. Позднее другие авторы отнеслись с сатирой к этой точке зрения, говоря об осле, который столкнувшись с двумя одинаковыми стогами сена, будет голодать, принимая решение.

5. Парадокс неожиданной казни

Судья говорит осужденному, что он будет повешен в полдень в один из рабочих дней на следующей неделе, но день казни будет для заключенного сюрпризом. Он не будет знать точную дату, пока палач в полдень не придет к нему в камеру. После, немного порассуждав, преступник приходит к выводу, что он сможет избежать казни.

Его рассуждения можно разделить на несколько частей. Начинает он с того, что его не могут повесить в пятницу, так как если его не повесят в четверг, то пятница уже не будет неожиданностью.

Таким образом, пятницу он исключил.

Но тогда, так как пятница уже вычеркнута из списка, он пришел к выводу, что он не может быть повешенным и в четверг, потому что если его не повесят в среду, то четверг тоже не будет неожиданностью.

Рассуждая аналогичным образом, он последовательно исключил все оставшиеся дни недели. Радостным он ложится спать с уверенностью, что казни не произойдет вовсе. На следующей неделе в полдень среды к нему в камеру пришел палач, поэтому, несмотря на все его рассуждения, он был крайне удивлен. Все, что сказал судья, сбылось.

4. Парадокс парикмахера

Предположим, что существует город с одним мужским парикмахером, и что каждый мужчина в городе бреется налысо: некоторые самостоятельно, некоторые с помощью парикмахера. Кажется разумным предположить, что процесс подчиняется следующему правилу: парикмахер бреет всех мужчин и только тех, кто не бреется сам.

Согласно этому сценарию, мы можем задать следующий вопрос: парикмахер бреет себя сам? Однако, спрашивая это, мы понимаем, что ответить на него правильно невозможно: — если парикмахер не бреется сам, он должен соблюдать правила и брить себя сам;

— если он бреет себя сам, то по тем же правилам он не должен брить себя сам.

3. Парадокс Эпименида

Этот парадокс вытекает из заявления, в котором Эпименид , противореча общему убеждению Крита, предположил, что Зевс был бессмертным, как в следующем стихотворении:

Они создали гробницу для тебя, высший святой Критяне, вечные лжецы, злые звери, рабы живота! Но ты не умер: ты жив и будешь жив всегда,

Ибо ты живешь в нас, а мы существуем.

Тем не менее, он не осознавал, что называя всех критян лжецами, он невольно и самого себя называл обманщиком, хотя он и “подразумевал”, что все критяне, кроме него.

Таким образом, если верить его утверждению, и все критяне лжецы на самом деле, он тоже лжец, а если он лжец, то все критяне говорят правду.

Итак, если все критяне говорят правду, то и он в том числе, а это означает, исходя из его стиха, что все критяне лжецы. Таким образом, цепочка рассуждений возвращается в начало.

2. Парадокс Эватла

Это очень старая задача в логике, вытекающая из Древней Греции. Говорят, что знаменитый софист Протагор взял к себе на учение Эватла, при этом, он четко понимал, что ученик сможет заплатить учителю только после того, как он выиграет свое первое дело в суде.

Некоторые эксперты утверждают, что Протагор потребовал деньги за обучение сразу же после того, как Эватл закончил свою учебу, другие говорят, что Протагор подождал некоторое время, пока не стало очевидно, что ученик не прикладывает никаких усилий для того, чтобы найти клиентов, третьи же уверены в том, что Эватл очень старался, но клиентов так и не нашел. В любом случае, Протагор решил подать в суд на Эватла, чтобы тот вернул долг.

Протагор утверждал, что если он выиграет дело, то ему будут выплачены его деньги. Если бы дело выиграл Эватл, то Протагор по-прежнему должен был получить свои деньги в соответствии с первоначальным договором, потому что это было бы первое выигрышное дело Эватла.

Эватл, однако, стоял на том, что если он выиграет, то по решению суда ему не придется платить Протагору. Если, с другой стороны, Протагор выиграет, то Эватл проигрывает свое первое дело, поэтому и не должен ничего платить. Так кто же из мужчин прав?

1. Парадокс непреодолимой силы

Парадокс непреодолимой силы представляет собой классический парадокс, сформулированный как “что происходит, когда непреодолимая сила встречает неподвижный объект?” Парадокс следует воспринимать как логическое упражнение, а не как постулирование возможной реальности.

Согласно современным научным пониманиям, никакая сила не является полностью неотразимой, и не существует и быть не может полностью недвижимых объектов, так как даже незначительная сила будет вызывать небольшое ускорение объекта любой массы.

Неподвижный предмет должен иметь бесконечную инерцию, а, следовательно, и бесконечную массу. Такой объект будет сжиматься под действием собственной силы тяжести.

Непреодолимой силе потребуется бесконечная энергия, которая не существует в конечной Вселенной.

___________________________________________________________

Adblock
detector