Управляемый термоядерный синтез – все о космосе

Как космические технологии помогают строить термоядерный реактор

Управляемый термоядерный синтез – все о космосе

Инженеры, занимающиеся созданием нового термоядерного реактора, используют опыт, накопленный при строительстве ракет «Ариан-5», чтобы создать суперпрочные конструкции и справиться с условиями, которые примерно такие же как на Солнце. Технологии, применяемые при строительстве пусковых установок и спутников, оказались лучшим вариантом для производства колец, на которые впоследствии установят мощные магниты для сдерживания плазмы.

Международный Термоядерный Экспериментальный Реактор, или МТЭР, является крупнейшим устройством для генерирования электроэнергии и в настоящее время строится во Франции. Испанский производитель сейчас делает кольца, используя метод, который они довели до совершенства за два десятилетия работы с «Ариан-5», «Вегой», спутниками и МКС.

«Проблемы в МТЭР подобны тому, что происходит в космосе. В таком случае невозможно использовать традиционные материалы как металл, которые расширяются и сжимаются в зависимости от температуры, а также проводят электричество. Мы должны сделать специальный композиционный материал, суперпрочный и одновременно легкий, непроводящий и никогда не меняющий форму», – сообщила компания.

CASA Espacio постоянно занимается развитием технологий, позволяющих создать прочный, облегченный композитный материал. Он зарекомендовал себя, как идеальный для производства ракетных частей, потому что хорошо сохраняет свою форму и предлагает отличную надежность, способен выдержать условия, возникающие при запуске, а также суровую космическую среду на протяжении 15 лет.

Теперь инженеры использует подобную технологию, чтобы создать сложные конструкции для термоядерного реактора. Диаметром 5 м и поперечным сечением 30×30 см, компрессионные кольца МТЭР будут способны удержать гигантские магниты на определенном месте.

Термоядерный синтез – причина почему светит Солнце и звезды. Управление этим экстремальным процессом долгое время оставалось мечтой.

Если бы человечеству удалось это сделать, то можно получить бесконечный источник энергии.

Идя путем научного сотрудничества между Китаем, ЕС, Индией, Японией, Южной Кореей, Россией и США, человечество строит первый прототип экспериментального устройства, которое возможно откроет путь к его давней мечте.

Строительство предполагается завершить к 2019 году, первые испытания пройдут уже в 2020-ом. МТЭР способен генерировать 500 МВт энергии.

Он призван продемонстрировать возможность непрерывного управляемого термоядерного синтеза и, впервые, подтвердить возможность производить больше энергии, чем требуется для поддержания своей работы.

По сути это безопасный, экологически чистый, без радиоактивных отходов, способ получения энергии. Один килограмм топлива позволит выработать аналогичное количество энергии, как при использовании 10000 тонн угля.

В сердце МТЭР находится магнитная камера, 23 м в диаметре. В процессе работы будут нагреваться электрически заряженные газы до +150000000 по Цельсию. Более горячая, чем на Солнце, плазма немедленно бы испарила любое сооружение.

Чтобы этого не произошло, гигантские электромагниты будут удерживать плазму на расстоянии от стенок, не допуская соприкосновения.

Создание конструкции, которая способна выдержать эти мощные магниты, долгое время являлось большой технической проблемой.

Но это удалось CASA Espacio благодаря опыту работы в космической отрасли. После завершения работ, каждое кольцо выдержит 7000 тонн нагрузки.

Управляемый термоядерный синтез — возможное решение всех энергетических проблем человечества | ЗНАНИЕ – СИЛА

Управляемый термоядерный синтез – все о космосе

Сегодня поговорим про один альтернативный проект создания реактора управляемого термоядерного синтеза, который лично мне нравится за свою абсолютную инженерную непохожесть ни на что. Речь пойдет о канадском стартапе General Fusion, существующем уже больше 10 лет и собравшем за это время порядка 100 млн долларов на свои разработки.

Сооснователи компании Doug Richardson (слева) и Michel Laberge (справа) на фоне плазменного инжектора для своей машины.

А теперь послушайте, на какую идею можно насобирать столько денег. В сферическом реакторе GF сотня мощных паровых молотов, расставленных по периметру будет синхронно ударять во вращающуюся трехметровую «каплю» из расплавленного свинца, что бы сформировать сходящуюся сферическую волну.

В центре капли остается вертикальный канал в который инжектируются плазменные вихри из дейтерий-тритиевой смеси. Точно расчитанная работа системы приведет к сжатию ровно в центре плазменного образования жидкометаллической стенкой и произойдет термоядерная реакция, в ходе которой выделится эквивалент взрыва нескольких сотен килограмм тротила.

Опытная сфера с 14 паровыми молотами, на которой проверялся принцип формирования сходящейся ударной волны.
Проектное изображение энергетического реактора на этом принципе и последовательность его работы.

Схлопывающаяся жидкометаллическая оболочка вокруг плазменных вихрей рассматривалась в качестве драйвера термоядерной реакции еще в 70х, в концептуальной установке LINUS. Однако 70е…80е — это было время наступающей победы токамаков, первых установок, достигших проявления термоядерных реакций. До LINUS руки не дошли.

Оригинальный концепт LINUS, 1979 год А вот в 90е годы, когда началось разочарование токамаками, и магнитными ловушками вообще, две альтернативные ветки термоядерных установок, основанные на инерциальном синтезе (“лазерный термояд”) и менее известной идее сжатия замагниченной плазмы (к этому направлению например известный MagLIF, разнообразные pinch-установки и т.п.

) получают развитие. При этом, если инерциальный синтез быстро получает поддержку военных, (т.е. условия в мишени получаются близкими к тем что есть в термоядерном оружии), то сжатие замагниченной плазмы (СЗП дальше) становится меккой для стартапов. Самыми известными из них являются Tri Alpha Energy, Helion Energy и вот пожалуй General Fusion.

Работа плазменного инжектора. Видно, что еще до финальной компрессии жидким металлом плазму сжимают в несколько раз, поднимая температуру до 2 млн градусов и плотность до 0,06% от необходимой для термоядерной реакции. Установка General Fusion планируется как импульсная — один термоядерный микровзрыв раз в 2 секунды.

Большим преимуществом по сравнению с другими импульсными установками является отсутствие расходуемых элементов (холраумов, лайнеров, картриджей и т.п.) — нужна только плазма и свинцовая капля. При каждом взрыве будет производиться 720 мегаджоулей тепла, которое будет поглощаться жидким металлом и отводиться на парогенератор через теплообменник.

 
Проектное изображение энергетического реактора. Синие элементы — высоковольтное питание плазменных инжекторов. Часть пара будет работать драйвером паровых молотов, а часть вырабатывать 65 мегаватт электричества на турбогенераторе.

Разумеется, в настоящей установке понадобится еще довольно мудренная система высоковольтной запитки плазменных разрядников, очистки свинца, размножения трития (GF считают, что это можно сделать путем подмешивания лития в жидкий свинец. Поглощая термоядерные нейтроны он будет разваливаться на гелий и тритий), но до всего этого еще надо дожить.

В целом, если ключевой момент — термоядерный поджиг — будет реализован, на фоне других концептов реакторов УТС это будет прорыв в плане простоты и дешевизны.
Текущая установка GF с жидкометаллической петлей, на которой в 2013 году получены сферические имплозии нужного качества.

Однако ключевой проблемой всего этого направления, и машины GF в частности является развитие неустойчивостей, которые не позволяют концентрировать энергию до нужных значений, а бесполезно рассеивают ее вокруг. Любые несимметричности и неточности в обжатии приведут к тому, что положительного выхода энергии с этого стимпанковского монстра не получится. Эта проблема в тех или иных видах на данный момент успешно похоронила не один десяток концепций. Тем не менее, детище Майкла Лаберже прошло множество проверок на ранних, модельных этапах, с открытыми обсуждениями научными сообществом полученных результатов. Именно такой подход и позволил привлечь множество серьезных инвесторов (в т.ч. основателя Amazon.com Джефа Безоса).

Настройка плазменного инжектора для тестов.

Пока GF полны оптимизма, хотя не смотря на успешное создание полноразмерных прототипов всех элементов машины (паровых молотов, сферы с жидким свинцом, разрядников — генераторов плазменных вихрей) и даже самой машины уже два года как не показывают никаких результатов, что скорее всего сигнализирует о том, что как и десятки других концепций в этом поле GF столкнулись с большими сложностями на пути концентрации энергии. опубликовано econet.ru 

Управляемый термоядерный синтез – один шаг в сорок лет

Управляемый термоядерный синтез – все о космосе

В наши дни водород (H) является один из самых перспективных источников добычи энергии, очень популярны исследования и разработки на эту тему. Для этого есть много предпосылок: продуктом окисления водорода является вода.

Учитывая количество воды на Земле, можно считать этот вид топлива неисчерпаемым.

Важной сферой применения водорода является осуществление термоядерного синтеза, который уже около 5 миллиардов лет поддерживает жизнь нашего светила – Солнца, и обеспечивает нас его теплом.

Управляемый термоядерный синтез

Управляемый термоядерный синтез базируется на энергии, выделяющейся при слиянии таких легких ядер, как ядра водорода и его изотопов трития и дейтерия. Такие реакции синтеза распространены во Вселенной, т.к. являются источником энергии всех звезд.

В центре нашей солнечной системы находится естественный термоядерный реактор. Он уже давно поддерживает жизнь на Земле, отдавая тепло и энергию, выделяющуюся при реакциях. Ядерный синтез уже используется человеком в производстве оружия – водородных бомб, имеющих колоссальную разрушительную силу.

Однако технологий для производства мирной энергии еще не хватает.

Исследования по созданию управляемого термоядерного синтеза упорно ведутся начиная со второй половины ХХ века как в странах бывшего СССР, так и в Европе и США. Почти сразу было установлено, что в военных целях управляемый термоядерный синтез использоваться не будет, т.к.

найти ему там применение пока не смогли. Начиная с 1956 г. все исследования стали проводиться в рамках глобального международного сотрудничества, в связи с рассекречиванием.

В те времена существовало ошибочное ощущение, что цель скоро будет достигнута и термоядерная плазма будет добыта в первых установках.

Но потребовалось около 40 лет, чтобы создать условия, при которых количество выделяемой при реакции энергии было сопоставимо с мощностью потраченной на нагрев. А в 1997 г. Европейский такомак JET – крупнейшая термоядерная установка, получил 16 МВт мощности, что вплотную приблизило ученых к цели.

Какие факторы повлияли на образование такой задержки? А причина была в том, что ученым и физикам пришлось решать такие проблемы, о которых они даже не задумывались в самом начале пути.

Результатом этих исследований стали новые ветки науки, одна из них – физика плазмы, объясняющая поведение вещества в реакторе.

Также пришлось научиться создавать глубоких вакуум в объемных ёмкостях, огромные сверхпроводящие магниты, мощнейшие источники рентгеновского излучения и лазеры и т.д.

{odnaknopka}

Управляемый термоядерный синтез

Управляемый термоядерный синтез – все о космосе

История становления задачи

В то время, как тяжёлых элементов, требующихся для ядерных реакций на Земле и в целом в космосе довольно мало, лёгких элементов для термоядерных реакций очень много как на Земле, так и в космосе.

Поэтому идея использовать термоядерную энергию во благо человечества пришла практически сразу с пониманием процессов, лежащих в её основе – это сулило поистине безграничные возможности, так как запасов термоядерного топлива на Земле должно было хватить на десятки тысяч лет вперёд.

Уже в 1951 году появились два основных направления развития термоядерных реакторов: Андреем Сахаровым и Игорем Таммом была разработана архитектура токамака в котором рабочая камера представляла из себя тор, в то время как Лайманом Спитцером была предложена архитектура стеллатора более замысловатой конструкции по форме более всего напоминающая лист Мёбиуса перевёрнутый не один, а несколько раз.

Простота принципиальной конструкции токамака позволила длительное время развивать это направление за счёт повышения характеристик обычных и сверхпроводящих магнитов, а также путём постепенного увеличения размеров реактора. Но с повышением параметров плазмы постепенно стали также проявляться и проблемы с её нестабильным поведением, которые тормозили процесс.

Сложность конструкции стеллатора и вовсе привела к тому что после первых экспериментов в 50-х годах развитие этого направления на долгое время остановилось.

Новое дыхание оно получило совсем недавно с появлением современных систем автоматизированного проектирования, которые позволили спроектировать стеллатор Wendelstein 7-X с необходимыми для его работы параметрами и точностью конструкции.

Физика процесса и проблемы в его реализации

Атомы железа имеют максимальную энергию связи на нуклон – то есть показатель энергии которую нужно затратить чтобы разделить атом на его составляющие нейтроны и протоны, делённый на их общее количество. Все атомы с меньшей и большей массой имеют этот показатель ниже железа:

При этом в термоядерных реакциях слияния лёгких атомов вплоть до железа выделяется энергия, а масса образующегося атома становится слегка меньше суммы масс исходных атомов на величину, соотносящуюся с выделяемой энергией по формуле E=mc² (так называемый дефект массы). Таким же образом выделяется энергия при ядерных реакциях деления атомов тяжелее железа.

При реакциях слияния атомов выделяется огромная энергия, но для того чтобы извлечь эту энергию нам в начале необходимо приложить определённое усилие для преодоления сил отталкивания между атомными ядрами которые являются положительно заряженными (преодолеть кулоновский барьер).

После того как нам удалось сблизить пару атомов на необходимое расстояние в действие вступает сильное ядерное взаимодействие, которое связывает нейтроны и протоны.

Для каждого вида топлива кулоновский барьер для начала реакции отличается также, как и отличается оптимальная температура реакции:

При этом первые термоядерные реакции атомов начинают фиксироваться задолго до достижения средней температурой вещества этого барьера благодаря тому, что кинетическая энергия атомов подвержена распределению Максвелла:

Но реакция при относительно низкой температуре (порядка нескольких млн °C) идёт крайне медленно.

Так скажем в центре Солнца температура достигает 14 млн °C, но удельная мощность термоядерной реакции в таких условиях составляет только 276,5 Вт/м³, а для полного расходования своего топлива Солнцу требуются несколько млрд лет.

Такие условия являются неприемлемыми для термоядерного реактора, так как при таком низком уровне выделения энергии мы неизбежно будем затрачивать на нагрев и сжатие термоядерного топлива больше, чем будем получать от реакции взамен.

По мере роста температуры топлива всё большая доля атомов начинает обладать энергией, превышающий кулоновский барьер и эффективность реакции растёт, достигая своего пика.

С дальнейшим повышением температуры скорость реакции снова начинает падать уже за счёт того, что кинетическая энергия атомов становится слишком большой и они «проскакивают» мима друг друга не в состоянии удержаться сильным ядерным взаимодействием.

Таким образом решение как получить энергию из управляемой термоядерной реакции было получено довольно быстро, но вот реализация этой задачи затянулась на полвека и так ещё до конца и не закончена.

Причина этого кроется в поистине безумных условиях, в которые оказалось необходимо поместить термоядерное топливо – для положительного выхода от реакции его температура должна была составлять несколько десятков млн °C.

Такую температуру физически не могли выдержать никакие стенки, но эта проблема почти сразу привела и к её решению: так как разогретое до таких температур вещество является горячей плазмой (полностью ионизованным газом) которое заряжено положительно, то решение оказалось лежащим на поверхности – нам просто надо было поместить такую разогретую плазму в сильное магнитное поле, которое будет удерживать термоядерное топливо на безопасном расстоянии от стенок.

Прогресс на пути его реализации

Исследования по данной теме идут в нескольких направлениях сразу:

  • с помощью использования сверхпроводящих магнитов учёные стараются сократить энергию, затрачиваемую на зажигание и поддержание реакции;
  • с помощью новых поколений сверхпроводников повышается индукция магнитного поля внутри реактора, которая позволяет удерживать плазму с более высокими показателями плотности и температуры, что увеличивает удельную мощность реакторов на единицу их объёма;
  • исследования в области горячей плазмы и успехи в сфере вычислительной техники позволяют лучше контролировать потоки плазмы, тем самым приближая термоядерные реакторы к их теоретическим пределам эффективности;
  • прогресс в предыдущей области также позволяет дольше удерживать плазму в стабильном состоянии, что увеличивает эффективность реактора за счёт того, что нам не надо так часто разогревать плазму вновь.
  • Не смотря на все трудности и проблемы, лежавшие на пути к управляемой термоядерной реакции, эта история уже приближается к своему финалу.

    В энергетике принято использовать показатель EROEI – energy return on energy investment (соотношение затраченной энергии при производстве топлива к тому объёму энергии, который мы из него получаем в итоге) для расчёта эффективности топлива.

    И в то время как EROEI угля продолжает расти, то этот показатель у нефти и газа достиг своего пика в середине прошлого века и теперь неуклонно падает за счёт того, что новые месторождения этих топлив находятся во всё в более труднодоступных местах и на всё больших глубинах:

    При этом наращивать производство угля мы также не можем по той причине, что получение энергии из него является очень грязным процессом и буквально уносит жизни людей прямо сейчас от различных заболеваний лёгких.

    Так или иначе мы сейчас стоим на пороге заката эры ископаемых топлив – и это не происки экологов, а банальные экономические расчёты при взгляде в будущее.

    При этом EROI у экспериментальных термоядерных реакторов, появившихся также в середине прошлого века, неуклонно росли и в 2007 году достигли психологического барьера в единицу – то есть в этом году человечеству впервые удалось получить посредством термоядерной реакции больше энергии, чем затратить на её осуществление.

    И несмотря на то что на реализацию реактора ITER, эксперименты с ним и производство уже первой демонстрационной термоядерной электростанции DEMO на основе полученного при реализации ITER опыта потребуется ещё много времени. Уже нет никаких сомнений в том, что за такими реакторами находится наше будущее.

    Критика исследований

    Основная критика исследований в области термоядерных реакторов основана на том, что исследования идут крайне медленно. И это правда – от первых экспериментов до производства безубыточной термоядерной реакции нам потребовалось целых 66 лет.

    Но суть проблемы тут заключается в том, что финансирование таких исследований никогда не достигало необходимого уровня – вот пример оценок Администрации энергетических исследований и разработок США по уровню финансирования проекта постройки термоядерного реактора и времени его завершения:

    Как видно по этому графику – удивительно не то что мы до сих пор не имеем коммерческих термоядерных реакторов, производящих электроэнергию, а то, что мы вообще смогли добиться какого-то положительного выхода энергии из экспериментальных реакторов на данный момент.

    Только благодаря совместной кооперации всех развитых стран в лице Евросоюза, России, США, Китая, Японии и Индии удалось проспонсировать такой проект как ITER, который должен привести нас в дальнейшем к электростанции DEMO и сотням других термоядерных электростанций, которые заменят нам в будущем иссякающие запасы легкодоступных ископаемых топлив.

    Управляемый термоядерный синтез: все еще «за горами»

    Управляемый термоядерный синтез – все о космосе

    Автор: Яна Жежер |  11 сентября 2017, 11:00

    Каждый раз, когда заходит речь о технологиях термоядерного синтеза, они всегда «появятся через тридцать лет». Так говорили ученые и в 1966 году, и в 1980, и в 2000. На каком же этапе находятся исследования и когда нам ожидать результатов?

    Энергия для жизни

    Современному человеку практически постоянно необходима энергия, в основном в виде электрического тока. В природе не существует батареек, розеток и проводов, но в достатке присутствуют различные природные явления, которые человек приспособил для генерации электричества.

    Они известны нам, как источники энергии. Большинство электростанций на Земле работает за счет движения воды или воздуха, сжигания угля и распада радиоактивных веществ.

    В первых двух случаях происходит вращение турбин или лопастей и вырабатывается кинетическая энергия (энергия движения). Остальные источники выделяют тепло, то есть энергию тепловую.

    Затем один тип энергии переводится в другой — происходит генерация электрического тока.

    Весьма популярны солнечные батареи: в них используются особые электрические эффекты, благодаря которым свет напрямую преобразуется в ток без «посредников».

    Отказ от атомной энергии

    Не секрет, что человечество очень и очень давно находится в поисках других источников энергии – альтернативных. Ветряные мельницы и солнечные батареи эффективно работают далеко не во всех регионах Земли и пока что стоят довольно дорого. Строительство гидроэлектростанций представляет собой серьезное вмешательство в окружающую экосистему.

    Про сжигание угля даже и не стоит упоминать: про парниковый эффект и про ограниченные запасы ископаемых слышали абсолютно все. Атомные электростанции позволяют получать действительно много энергии, но вызывают массу вопросов и опасений.

    Технологии контролируемого распада радиоактивных элементов давно отработаны и признаны безопасными, но в случае аварий (которые, увы, случались) ущерб оказывается колоссальным.

    Многие страны, к счастью или к сожалению, стали отказываться от использования атомной энергии.

    Альтернативные источники

    В попытках найти дешевый, распространенный, эффективный, не наносящий вред окружающей среде и безопасный (в общем, идеальный) источник энергии человечество перепробовало, кажется, уже все возможные варианты: геотермальную энергию, грозовую, различные виды биологического топлива и еще множество всевозможных идей.

    В настоящее время у всех альтернативных источников находятся принципиальные недостатки. Например, в случае с геотермальными источниками это относительно малая распространенность: очень эффективно, если вы живете в Исландии или на Камчатке, но абсолютно бесполезно в центральной части России.

    Или другая проблема — отсутствие топлива в достаточных количествах и высокая стоимость производства. Создавать, скажем, биоводород, альтернативу бензину, пока что весьма затратно.

    И не стоит забывать, производство экологически чистого топлива иногда само по себе иногда наносит окружающей среде вред весьма серьезный вред — использование новых источников энергии просто теряет смысл.

    Но уже более пятидесяти лет ученых не покидает одна весьма привлекательная идея: разработка технологии управляемого термоядерного синтеза.

    Синтез: почему именно он

    Принцип действия атомных электростанций основан на свойствах атомных ядер: некоторые элементы расщепить легче, чем другие, это зависит от того, насколько сильно связаны друг с другом составляющие ядер отдельного взято вещества. Оказывается, что сила связи растет от водорода к железу, а затем начинает уменьшаться.

    Это говорит о том, что химическим элементам легче железа энергетически выгоднее соединяться, а после железа им выгоднее разделяться на более легкие составляющие. В атомной энергетике используются «тяжелые» вещества, такие как уран, при распаде выделяющие энергию.

    На использовании свойств слияния элементов до железа основаны технологии термоядерного синтеза, то есть слияния легких элементов.

    Такие процессы происходят внутри звезд, в том числе нашего Солнца: атомы водорода при соединении образуют гелий, затем слияние гелия образует более тяжелые элементы, бериллий и литий, и цепочка длится вплоть до образования железа.

    При всех этих процессах выделяется колоссальная энергия, благодаря которой звезды светятся. Благодаря ней на Земле существует жизнь.

    Ломать — не строить

    Термоядерный синтез смог бы решить большинство энергетических проблем человечества: количество выделяемой в реакциях энергии значительно превышает все современные источники. Но есть одно «но» — технологически это оказывается сделать очень и очень сложно.

    Атомная энергия выделяется фактически сама по себе — радиоактивный распад происходит естественным путем, главное лишь контролировать скорость реакции. Для запуска термоядерного синтеза необходимо сначала сблизить два легких элемента, а потом заставить их слиться.

    Но это не так просто сделать — они будут отталкиваться тем сильнее, чем меньше будет расстояние между двумя атомами. Температура внутри звезд достигает нескольких тысяч градусов: этой энергии оказывается достаточно для начала реакции.

    Но человеку такие мощности пока недоступны.

    Не раньше 2054 года

    Ряд европейских университетов и научно-исследовательских институтов, изучающих проблему термоядерного синеза, создал организацию EUROfusion, цель которой — объединять усилия и наработки в данной сфере.

    По планам, запуск первой пробной электростанции, DEMO, планировался в 2040 году, но затем был сдвинутс на 2054 год. Некоторые ученые предполагают, что реальные результаты могут быть получены еще позже.

    Запуск DEMO откладывается из-за проблем в строительстве реактора ITER, который станет основой будущей электростанции и обеспечит соответствующие мощности. Это совместный проект Европейского союза, Индии, Японии, Южной Кореи, России и США, заложенный на юге Франции.

    Создание дорогостоящего реактора постоянно тормозится из-за перебоев в инвестициях и внутренних междоусобиц — Китай и Южная Корея запустили проекты собственных демонстрационных реакторов, и их интерес к вкладам в ITER снизился. Но пока не будет закончен реактор, невозможно полностью разработать проект будущей электростанции DEMO.

    Этот замкнутый круг не позволяет с уверенностью сказать, что мы действительно сможем увидеть результаты через тридцать лет.

    Будущее термоядерного синтеза остается туманным.

    Строительство реактора ITER — огромный шаг вперед, но некоторые настроены весьма скептически: он будет работать короткими «пульсами», а для электростанции, работающей на термоядерном синтезе, необходима бесперебойная подача энергии. Ученым еще явно есть, над чем подумать. Единственное, в чем они уверены наверняка — термоядерный синтез никогда не будет «дешевым, быстрым и малогабаритным».

      Поделиться   Поделиться

    Термоядерный синтез впервые дал энергию

    Управляемый термоядерный синтез – все о космосе

    Ученые впервые в ходе управляемой реакции термоядерного синтеза получили на 1% больше энергии, чем было затрачено на ее инициацию. Это важное достижение на пути к овладению технологией, которая решит энергетические проблемы человечества.

    С помощью набора самых мощных лазеров NIF (National Ignition Facility) американской Ливерморской национальной лаборатории, ученые впервые получили от управляемой реакции термоядерного синтеза чуть больше энергии, чем было поглощено топливом.

    По словам ученых, это важная символическая веха, которая укрепляет веру в то, что человечеству удастся овладеть практически неисчерпаемым источником энергии.

    Разумеется, до конечной цели еще далеко: зажигание и поддержание стабильной реакции, выдающей огромное количество энергии, пока остается отдаленной перспективой.

    Тем не менее, руководитель проекта по изучению высокоэнергетических рентгеновских импульсов в Sandia National Laboratory Марк Херрманн отметил, что это важный шаг на пути к зажиганию продуктивной реакции.

    Управление термоядерной реакцией оказалось чрезвычайно трудным делом. Проблема в том, что необходимо управлять чрезвычайно сложным рабочим телом: плазмой, нагретой до температуры в миллионы градусов.

    Ученые из разных стран исследуют различные способы поддержания термоядерной реакции, например опытная установка ITER, строящаяся на юге Франции, будет удерживать плазму магнитными полями внутри реактора тороидальной формы.

    В ходе обычной ядерной реакции энергия выделяется в результате ядерного распада очень тяжелых атомных ядер, например, урана. При термоядерном синтезе, энергию образуется в результате слияния легких ядер, например водорода. Во время такой реакции крошечная часть массы отдельных атомных ядер водорода превращается в энергию. Именно термоядерный синтез питает звезды, в том числе и наше Солнце.

    Мишень с хольраумом, готовая к “обстрелу” лазерами

    Для зажигания термоядерной реакции необходимо применить значительное количество энергии, чтобы преодолеть силу электростатического отталкивания атомных ядер и сблизить их друг с другом. В NIF эта энергия обеспечивается воздействием 192 мощных лазеров, которые облучают золотой цилиндрический топливный контейнер размером с горошину.

    Этот контейнер, названный хольраум, содержит песчинку топлива: тончайший слой из дейтерия и трития. Хольраум поглощает энергию лазеров и повторно излучает ее в виде рентгеновских лучей, часть которых поглощается капсулой топлива.

    При этом внешний пластиковый корпус хольраума взрывается, и сила взрыва сжимает легкие атомные ядра до такой степени, что этого достаточно для запуска термоядерного синтеза.

    Геометрия хольраума с капсулой внутри. Это модель топливной ячеки для будущих термоядерных реакторов

    К сожалению, до сих пор большая часть энергии лазеров поглощалась хольраумом, а не пластиковой оболочкой, что приводило к ее неравномерному и менее интенсивному испарению. В итоге хольраум поглощал слишком много энергии – гораздо больше, чем давала термоядерная реакция на выходе.

    Чтобы решить эту проблему, ученые перенастроили лазер, чтобы доставить больше энергии в начале импульса. Это приводит к более интенсивному нагреванию хольраума и “разбуханию”, пластиковой оболочки. В результате пластиковая оболочка становится менее склонной к неравномерному испарению и меньше нарушает течение термоядерного синтеза.

    В результате исследователи смогли достичь положительного выхода энергии на уровне 1,2-1,9 от затраченной, причем большая часть произведенной энергии была получена в ходе самонагревания топлива излучением, что является важным условием поддержания стабильной управляемой реакции синтеза. Ранее ни в одной лаборатории не удавалось достичь подобного результата. Несмотря на то, что положительный выход энергии составил лишь на 1% больше затраченной на зажигание синтеза, – это большой успех.

    А что же это за “хольраум” такой?

    Золотой хольраум лазерного термояда

    Национальный комплекс лазерных термоядерных реакций (National Ignition Facility, NIF) в Соединённых Штатах называют лазерным термоядом двойного назначения.

    Он призван помочь американским вооружённым силам поддерживать в боеспособном состоянии свои ядерные арсеналы в условиях моратория на ядерные испытания, и он же предлагает прорывные открытия, способные обеспечить цивилизацию морем чистой и дешёвой энергии.

    Если верить прессе, то дела на NIF разворачиваются как нельзя удачно. Но у аудиторов главной бухгалтерской службы США (GAO, аналог российской Счётной палаты) есть в этом сомнения, которым они поделились с конгрессом в докладе за номером GAO-10-488.

    NIF, NIC и NNSA

    В марте 2009 года национальное управление США по ядерной безопасности (NNSA) завершило строительство NIF – проекта стоимостью 3,5 миллиарда долларов в национальной лаборатории Лоуренс Ливермор. В смету входят 2,2 миллиарда долларов, затраченных на собственно строительство, и 1,3 миллиарда долларов, ушедших на сборку и монтаж 192 лазеров и связанного оборудования.

    Управление планирует создавать в NIF экстремально высокие давления и температуры, характерные для ядерных взрывов. Если всё пройдёт удачно, то новая установка позволит американцам исследовать характеристики ядерных взрывных устройств без их испытаний, запрещённых условиями принятого в США в 1992 году моратория.

    NNSA по праву называет лазерный термояд “критическим компонентом” крупномасштабной программы по поддержанию боеготовности американских ядерных арсеналов. Военные задачи станут для NIF первоочередным приоритетом, но военное управление готово предоставлять мощности установки и для гражданских исследователей.

    За проектирование и строительство NIF непосредственно отвечает национальная лаборатория Лоуренс Ливермор. Первые теоретические исследования, имеющие целью подготовку к появлению NIF, датируются мартом 1997 года.

    В 2005 году управление NNSA, выполняя директивы конгресса, создало компанию NIC (National Ignition Campaign) и поручило ей курировать управленческие вопросы по проекту.

    Кроме этого, для стороннего контроля за проектом приглашаются независимые эксперты и экспертные группы.

    Лазеры и хольраум

    Технология, используемая в NIF, может быть названа “лазерной термоядерной реакцией”. В американской литературе за ней закрепился термин “ignition”. После того, как всё будет готово, операторы NIF должны одновременно сконцентрировать пучки 192 лазеров на мишенях с размерами меньше 10-центовой монеты. Общая энергия пучков составит 1,8 МДж.

    За один рабочий цикл продолжительностью порядка одной миллионной доли секунды, пучки должны пройти сквозь ряд оптических умножителей, после чего сфокусироваться на микроскопической мишени. Последняя будет располагаться внутри сферической камеры высотой 10 метров.

    Схема установки NIF – рисунок аудиторов GAO.
    Щёлкните левой клавишей мыши для просмотра в полном масштабе.

    Сама по себе мишень, в свою очередь, представляет собой полый золотой цилиндр.

    Его называют немецким словом “хольраум” (hohlraum) – это полость, чьи стенки пребывают в радиационном равновесии с полостью.

    В хольрауме, как в матрёшке, скрывается топливная капсула размером с перчинку. Она состоит из замороженного слоя дейтерия и трития, окружающего охлаждённую газообразную смесь этих же изотопов.

    Лазеры установки NIF должны в ходе работы быстро нагревать внутренние стенки хольраума, которые будут конвертировать энергию лазера в рентгеновское излучение.

    В свою очередь, рентгеновские лучи должны быстро нагревать внешнюю поверхность топливной капсулы.

    При должном нагреве капсула должна схлопнуться с силой, сравнимой с возникающими при запуске ракеты, то есть должен произойти направленный внутрь взрыв (имплозия) дейтерий-тритиевого слоя.

    Если имплозия пройдёт симметрично и с желаемой скоростью, то атомы дейтерия и трития будут принуждены к вступлению в реакцию синтеза длительностью 10 триллионных долей секунды. Температуры, которые будут создаваться в топливной капсуле, ожидаются порядка 100 миллионов градусов – то есть, в капсуле окажется горячее, чем в центре Солнца.

    Схема переноса энергии в хольрауме – рисунок аудиторов GAO.
    Щёлкните левой клавишей мыши для просмотра в полном масштабе.

    Предварительные испытания в обоснование процессов, заложенных в установке NIF, проходили в лаборатории лазерной энергетики университета Рочестера (Нью-Йорк).

    Лазерные системы OMEGA и OMEGA EP, действующие в лаборатории, играют на сегодняшний день роль рабочей лошадки для всех исследований, проводимых в NNSA по направлению лазерного термояда.

    До создания NIF, им принадлежал мировой рекорд по энергии лазерного пучка.

    Мишени, хольраумы и другое связанное оборудование для NIF поставляет калифорнийская компания “General Atomics”. Национальная лаборатория Лос-Аламоса отвечает за системы диагностики, а Сандийская лаборатория – за проведение вспомогательных исследований на установке “Z Machine”, способной преобразовывать электромагнитное излучение в рентгеновское.

    Технические проблемы

    Приведёт ли создание NIF к успеху и смогут ли американские учёные зажечь термоядерную реакцию при помощи лазеров? Аудиторы GAO сухо напоминают о выводах независимой группы JASON, в которых перечислены стоящие перед разработчиками NIF технические проблемы.

    Одна из главных задач – необходимо минимизировать потери лазерного излучения, то есть, существенно понизить долю энергии, которая пройдёт мимо хольраума или отразится от его стенок.

    Если отражение грозит простой потерей энергии, то каждый промахнувшийся пучок будет отрицательно влиять на симметричность сжатия топливной капсулы, ставя, тем самым, под сомнение факт инициации термоядерной реакции.

    Даже самое точное нацеливание лазерного пучка не гарантирует полного успеха. Под воздействием лазерного излучения внутри хольраума стартует процесс ионизации, и образующийся заряженный газ вмешается в процессы передачи энергии. Говоря кратко, в результате взаимодействия ионизированных частиц и лазерных пучков часть прибывшей в хольраум энергии будет выведена обратно за его пределы.

    Учёные называют такой процесс “нестабильностью типа лазер-плазма”(laser-plasma instability). Помимо потери энергии, он приводит также к нежелательной интерференции между лазерными пучками, что будет плохо сказываться на симметричности имплозии.

    Вторая важнейшая проблема NIF связана со скоростью имплозии. Чтобы возбудить термоядерную реакцию, топливную капсулу следует сжать в 40 тысяч раз по сравнению с её исходным размером. При этом капсула обязана сохранять сферическую форму. Более того, имплозия должна происходить с заданной скоростью, иначе не получится создать давления, необходимые для начала синтеза лёгких ядер.

    Если поверхность топливной капсулы не будет достаточно гладкой, или если рентгеновские лучи будут падать на капсулу неравномерно, то на капсуле начнут образовываться пальчикообразные выступы.

    Как показывают результаты расчётов по математическим моделям, образование выступов станет следствием гидродинамических нестабильностей, возникающих при контакте материалов с различными плотностями.

    Если выступов окажется слишком много, то термоядерная реакция не пойдёт, так как за счёт выступов будет снижаться температура внутри капсулы.

    Пальчикообразные выступы на поверхности топливной капсулы – рисунок аудиторов GAO.
    Щёлкните левой клавишей мыши для просмотра в полном масштабе.

    Кроме двух названных проблем, создатели NIF сталкиваются и с более традиционными, но от этого не менее серьёзными сложностями. Так, им нужно обеспечить надёжный контроль за состоянием оптики, которая, разумеется, будет со временем повреждаться проходящими через неё лазерными пучками.

    Вначале таких повреждений будет мало, но со временем их количество начнёт расти, и если общий процент повреждений перевалит за определённый предел, то эксплуатация NIF на номинальных параметрах окажется невозможной.

    К чести создателей NIF, они не устраняются от проблем. Был полностью переделан проект хольраума, и его новая конструкция обещает минимизировать потери лазерной энергии.

    Из его проекта были убраны покрытия точек входа лазерных пучков, как только оказалось, что благая на первый взгляд идея особым образом обустроить места попадания лучей в мишень ведёт к резкому росту нестабильностей “лазер-плазма”.

    После долгих поисков учёные остановились на гелии как материале, заполняющем хольраум. В исходном проекте предполагалось использовать смесь водорода и гелия.

    Эти и другие модификации прошли проверку боем в ходе первых экспериментов на NIF, выполнявшихся в 2009 году.

    Полученные результаты признаны удовлетворительными, и есть надежды избежать нестабильностей при работе на номинальной мощности.

    Понимание процессов имплозии должно улучшиться после завершения серии компьютерных расчётов в двух- и трёхмерных моделях. Кроме этого, гидродинамическая нестабильность активно изучается на уже упоминавшемся комплексе OMEGA. Персонал NIF надеется также, что сумеет обеспечить контроль за состоянием оптики.

    Работа NIF при суммарной энергии лазерных пучков 1,8 МДж отодвинута на 2011 год. До конца 2010 года установка будет трудиться с энергиями 1,2-1,3 МДж. По утверждению специалистов, при энергии 1,2 МДж потери энергии за счёт нестабильностей не превысили в первых экспериментах величины 6%, при том, что проект допускает 15%-ные потери.

    Первые включения привели и к первым потерям в оптике. В марте 2009 года часть пучков была неожиданно отражена по дороге к мишени. “Удачный” залп в сочетании с погрешностью конструкции вывел из строя 4% от общего количества имеющихся в системе зеркал. К большой удаче, “расстрел” произошёл при низких энергиях пучков, в противном случае последствия могли оказаться ещё более худшими.

    Установка NIF шаг за шагом продвигается к номиналу. Последние по времени результаты, полученные в экспериментах декабря 2009 года, получены при энергии лазеров 1,2 МДж.

    Независимые эксперты призывают к осторожности. Они предсказывают, что NIF обязательно столкнётся с новыми технологическими и физическими проблемами, которые на данном этапе невозможно даже предсказать. А аудиторы GAO задаются вопросом – реален ли текущий график, согласно которому первая лазерная термоядерная реакция произойдёт в 2012 году?

    ИСТОЧНИК: Михаил Сторожевой, AtomInfo.Ru
    ДАТА: 13.04.2010

    Adblock
    detector